Analisis Sentimen Terhadap Sebuah Figur Publik di Twitter Menggunakan Metode K-Nearest Neighbor
DOI:
https://doi.org/10.30865/klik.v4i6.1904Keywords:
Puan Maharani; K-NN; Society; Twitter; Sentiment ClassificationAbstract
The development of online media, particularly through social media platforms like Twitter, has created a vast stage for various activities, including political campaigns and public opinion on public figures. When information technology advances rapidly, public opinion can be conveyed without time constraints through social media. Twitter, with its character limitations and the use of hashtags by users, is considered easier to gather information about existing opinions and sentiments. Currently, social media is widely used for communication and making friends, but also for other activities. Advertising products, buying and selling anything, including advertising political parties and campaigning for members of Congress or presidential candidates. This research focuses on sentiment analysis towards Puan Maharani, the Speaker of the Indonesian House of Representatives (DPR RI), using data from the social media platform Twitter. Twitter, as a platform that allows users to express opinions in a concise format, is used as the main source of information in this research. The K-Nearest Neighbor algorithm for sentiment analysis technique is utilized to classify individual tweets into positive or negative categories regarding views on Puan Maharani. The methods used in this research include data crawling, labeling, and data preprocessing, which involve case folding, cleaning, tokenizing, negation handling, normalization, stopword removal, and stemming. For the classification process, the K-Nearest Neighbor method, feature weighting (TF-IDF), and feature selection (thresholding) are employed, with a threshold value of 0.001. The data used comprises 9,000 tweets in the Indonesian language. The results of the testing conducted in the K-Nearest Neighbor method, using confusion matrices, with 6 different values of K (3, 5, 7, 9, 11, 13), with comparison mechanisms of 90:10, 80:20, and 70:30 achieved the highest accuracy of 90.00% with K = 11 from the comparison using the 90:10 ratio
Downloads
References
I. Febriansyah, M. Fikry, and Yusra, “Analisis Sentiment di Twitter terhadap Anies Baswedan sebagai Bakal Calon Presiden 2024 Menggunakan Metode K-Nearest Neighbor,” G-Tech: Jurnal Teknologi Terapan, vol. 7, no. 3, pp. 1061–1070, Jul. 2023, doi: 10.33379/gtech.v7i4.2723.
Z. Ulfah Siregar, R. Ruli, A. Siregar, and R. Arianto, “KLASIFIKASI SENTIMENT ANALYSIS PADA KOMENTAR PESERTA DIKLAT MENGGUNAKAN METODE K-NEAREST NEIGHBOR,” vol. 8, no. 1, 2019.
F. Zahria Emeraldien, R. Jefri Sunarsono, R. Alit, J. Raya Rungkut Madya, G. Anyar, and J. Timur, “TWITTER SEBAGAI PLATFORM KOMUNIKASI POLITIK DI INDONESIA.” 2019
D. Aby Vonega, A. Fadila, and D. Ely Kurniawan, “Analisis Sentimen Twitter Terhadap Opini Publik Atas Isu Pencalonan Puan Maharani dalam PILPRES 2024,” 2022. [Online]. Available: http://jurnal.polibatam.ac.id/index.php/JAIC
R. T. Prasetio, “SELEKSI FITUR DAN OPTIMASI PARAMETER k-NN BERBASIS ALGORITMA GENETIKA PADA DATASET MEDIS,” JURNAL RESPONSIF, vol. 2, no. 2, pp. 213–221, 2020, [Online]. Available: http://ejurnal.ars.ac.id/index.php/jti
A. Malik Zuhdi, E. Utami, and S. Raharjo, “ANALISIS SENTIMENT TWITTER TERHADAP CAPRES INDONESIA 2019 DENGAN METODE K-NN,” 2019. doi: Vol 5 No 2 (2019): Juni.
D. Apriliani, A. Susanto, M. Fikri Hidayattullah, and G. Wiro Sasmito, “Sentimen Analisis Pandangan Masyarakat Terhadap Vaksinasi Covid 19 Menggunakan K-Nearest Neighbors,” vol. 8, no. 1, 2023.
S. Omas Tutus Arifta and M. Fikry, “Klasifikasi Sentimen Masyarakat di Twitter terhadap Ganjar Pranowo dengan Metode K-Nearest Neighbor,” JSAI?: Journal Scientific and Applied Informatics, vol. 06, no. 02, 2023, doi: 10.36085.
“Analisis Sentimen Twitter Pengaruh Tokoh Politik dengan Menggunakan Metode K-Nearest Neighbor.” doi: Vol 2 No 2 (2024): JNATIA Vol. 2, No. 2, Februari 2024.
M. Furqan, S. Mayang Sari, and P. Ilmu Komputer Fakultas Sains dan Teknologi, “Analisis Sentimen Menggunakan K-Nearest Neighbor Terhadap New Normal Masa Covid-19 Di Indonesia Sentiment Analysis using K-Nearest Neighbor towards the New Normal During the Covid-19 Period in Indonesia,” 2022. doi: 10.33633/tc.v21i1.5446.
A. Yoga Pratama et al., “Analisis Sentimen Media Sosial Twitter Dengan Algoritma K-Nearest Neighbor Dan Seleksi Fitur Chi-Square (Kasus Omnibus Law Cipta Kerja),” 2021. doi: Vol 5, No 2 (2021).
R. M. Candra and A. Nanda Rozana, “Klasifikasi Komentar Bullying pada Instagram Menggunakan Metode K-Nearest Neighbor,” IT Journal Research and Development, vol. 5, no. 1, pp. 45–52, Jul. 2020, doi: 10.25299/itjrd.2020.vol5(1).4962.
A. Noviyanti, Y. Umaidah, R. Mayasari, U. Singaperbangsa, and K. Abstract, “Analisis Sentimen Pada Pembelajaran Daring Menggunakan Metode K-Nearest Neightbour (Studi Kasus: SMA Negeri 3 Cikampek),” Jurnal Ilmiah Wahana Pendidikan, 2022, doi: 10.5281/zenodo.6943200.
M. Sholeh, D. Andayati, R. Yuliana Rachmawati, P. Studi Informatika, and F. Teknologi Informasi dan Bisnis, “DATA MINING MODEL KLASIFIKASI MENGGUNAKAN ALGORITMA K-NEAREST NEIGHBOR DENGAN NORMALISASI UNTUK PREDIKSI PENYAKIT DIABETES.” 2022, doi: 12(02):77-87.
D. Ferarizki, M. Fikry, F. Yanto, and F. Insani, “Klasifikasi Sentimen Masyarakat di Twitter Terhadap Ancaman Resesi Ekonomi 2023 dengan Metode K-Nearest Neighbor,” vol. 4, no. 2, 2023, doi: 10.30865/klik.v4i2.1315.
A. Deviyanto, M. R. Didik Wahyudi, and T. Informatika UIN Sunan Kalijaga Yogyakarta Jl Marsda Adi Sucipto No, “PENERAPAN ANALISIS SENTIMEN PADA PENGGUNA TWITTER MENGGUNAKAN METODE K-NEAREST NEIGHBOR,” Jurnal Informatika Sunan Kalijaga, vol. 3, no. 1, pp. 1–13, 2018
J. A. Septian, T. M. Fahrudin, and A. Nugroho, “Analisis Sentimen Pengguna Twitter Terhadap Polemik Persepakbolaan Indonesia Menggunakan Pembobotan TF-IDF dan K-Nearest Neighbor,” JOURNAL OF INTELLIGENT SYSTEMS AND COMPUTATION, vol. 1, no. 1, pp. 43–49, 2019, doi: https://doi.org/10.52985/insyst.v1i1.36.
C. Heltroyce, G. Feoh, and I. Made Dwi Ardiada, “SENTIMENT ANALYSIS ON THE INCREASE OF FUEL OIL PRICES USING THE K-NEAREST NEIGHBOR ALGORITHM ANALISIS SENTIMEN TERHADAP KENAIKAN HARGA BAHAN BAKAR MINYAK MENGGUNAKAN ALGORITMA K-NEAREST NEIGHBOR,” 2024. doi: Vol. 3, No.1 April 2024.
A. Asro’i and H. Februariyanti, “Analisis Sentimen Pengguna Twitter terhadap Perpanjangan PPKM Menggunakan Metode K-Nearest Neighbor,” Jurnal Khatulistiwa Informatika, vol. 10, no. 1, pp. 17–24, 2022.
S. Lonang and D. Normawati, “Klasifikasi Status Stunting Pada Balita Menggunakan K-Nearest Neighbor Dengan Feature Selection Backward Elimination,” JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 6, no. 1, p. 49, Jan. 2022, doi: 10.30865/mib.v6i1.3312.
N. Basidt, E. Supriyadi, and A. Susilo, “Perbandingan Algoritma Klasifikasi dalam Analisis Sentimen Opini Masyarakat tentang Kenaikan Harga BBM” 2023
R. Noviantho, A. Siswo, R. Ansori, and R. R. Septiawan, “ANALISIS SENTIMEN PADA KOMENTAR VIDEO ULASAN MAKANAN DARI SALURAN YOUTUBE BERBAHASA INDONESIA MENGGUNAKAN K-NEAREST NEIGHBOR SENTIMENT ANALYSIS ON VIDEO COMMENTS ABOUT FOOD REVIEW FROM INDONESIAN YOUTUBE CHANNELS USING K-NEAREST NEIGHBOR.” 2021
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Analisis Sentimen Terhadap Sebuah Figur Publik di Twitter Menggunakan Metode K-Nearest Neighbor
ARTICLE HISTORY
Issue
Section
Copyright (c) 2024 Yenggi Putra Dinata, Yusra, Muhammad Fikry, Febi Yanto, Eka Pandu Cynthia
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).