Analisis Sentimen Terhadap Sebuah Figur Publik di Twitter Menggunakan Metode K-Nearest Neighbor


Authors

  • Yenggi Putra Dinata Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia
  • Yusra Universitas Islam Negeri Sultan Syarif Kasim, Pekanbaru, Indonesia
  • Muhammad Fikry Universitas Islam Negeri Sultan Syarif Kasim, Pekanbaru, Indonesia
  • Febi Yanto Universitas Islam Negeri Sultan Syarif Kasim, Pekanbaru, Indonesia
  • Eka Pandu Cynthia Universitas Islam Negeri Sultan Syarif Kasim, Pekanbaru, Indonesia

DOI:

https://doi.org/10.30865/klik.v4i6.1904

Keywords:

Puan Maharani; K-NN; Society; Twitter; Sentiment Classification

Abstract

The development of online media, particularly through social media platforms like Twitter, has created a vast stage for various activities, including political campaigns and public opinion on public figures. When information technology advances rapidly, public opinion can be conveyed without time constraints through social media. Twitter, with its character limitations and the use of hashtags by users, is considered easier to gather information about existing opinions and sentiments. Currently, social media is widely used for communication and making friends, but also for other activities. Advertising products, buying and selling anything, including advertising political parties and campaigning for members of Congress or presidential candidates. This research focuses on sentiment analysis towards Puan Maharani, the Speaker of the Indonesian House of Representatives (DPR RI), using data from the social media platform Twitter. Twitter, as a platform that allows users to express opinions in a concise format, is used as the main source of information in this research. The K-Nearest Neighbor algorithm for sentiment analysis technique is utilized to classify individual tweets into positive or negative categories regarding views on Puan Maharani. The methods used in this research include data crawling, labeling, and data preprocessing, which involve case folding, cleaning, tokenizing, negation handling, normalization, stopword removal, and stemming. For the classification process, the K-Nearest Neighbor method, feature weighting (TF-IDF), and feature selection (thresholding) are employed, with a threshold value of 0.001. The data used comprises 9,000 tweets in the Indonesian language. The results of the testing conducted in the K-Nearest Neighbor method, using confusion matrices, with 6 different values of K (3, 5, 7, 9, 11, 13), with comparison mechanisms of 90:10, 80:20, and 70:30 achieved the highest accuracy of 90.00% with K = 11 from the comparison using the 90:10 ratio

Downloads

Download data is not yet available.

References

I. Febriansyah, M. Fikry, and Yusra, “Analisis Sentiment di Twitter terhadap Anies Baswedan sebagai Bakal Calon Presiden 2024 Menggunakan Metode K-Nearest Neighbor,” G-Tech: Jurnal Teknologi Terapan, vol. 7, no. 3, pp. 1061–1070, Jul. 2023, doi: 10.33379/gtech.v7i4.2723.

Z. Ulfah Siregar, R. Ruli, A. Siregar, and R. Arianto, “KLASIFIKASI SENTIMENT ANALYSIS PADA KOMENTAR PESERTA DIKLAT MENGGUNAKAN METODE K-NEAREST NEIGHBOR,” vol. 8, no. 1, 2019.

F. Zahria Emeraldien, R. Jefri Sunarsono, R. Alit, J. Raya Rungkut Madya, G. Anyar, and J. Timur, “TWITTER SEBAGAI PLATFORM KOMUNIKASI POLITIK DI INDONESIA.” 2019

D. Aby Vonega, A. Fadila, and D. Ely Kurniawan, “Analisis Sentimen Twitter Terhadap Opini Publik Atas Isu Pencalonan Puan Maharani dalam PILPRES 2024,” 2022. [Online]. Available: http://jurnal.polibatam.ac.id/index.php/JAIC

R. T. Prasetio, “SELEKSI FITUR DAN OPTIMASI PARAMETER k-NN BERBASIS ALGORITMA GENETIKA PADA DATASET MEDIS,” JURNAL RESPONSIF, vol. 2, no. 2, pp. 213–221, 2020, [Online]. Available: http://ejurnal.ars.ac.id/index.php/jti

A. Malik Zuhdi, E. Utami, and S. Raharjo, “ANALISIS SENTIMENT TWITTER TERHADAP CAPRES INDONESIA 2019 DENGAN METODE K-NN,” 2019. doi: Vol 5 No 2 (2019): Juni.

D. Apriliani, A. Susanto, M. Fikri Hidayattullah, and G. Wiro Sasmito, “Sentimen Analisis Pandangan Masyarakat Terhadap Vaksinasi Covid 19 Menggunakan K-Nearest Neighbors,” vol. 8, no. 1, 2023.

S. Omas Tutus Arifta and M. Fikry, “Klasifikasi Sentimen Masyarakat di Twitter terhadap Ganjar Pranowo dengan Metode K-Nearest Neighbor,” JSAI?: Journal Scientific and Applied Informatics, vol. 06, no. 02, 2023, doi: 10.36085.

“Analisis Sentimen Twitter Pengaruh Tokoh Politik dengan Menggunakan Metode K-Nearest Neighbor.” doi: Vol 2 No 2 (2024): JNATIA Vol. 2, No. 2, Februari 2024.

M. Furqan, S. Mayang Sari, and P. Ilmu Komputer Fakultas Sains dan Teknologi, “Analisis Sentimen Menggunakan K-Nearest Neighbor Terhadap New Normal Masa Covid-19 Di Indonesia Sentiment Analysis using K-Nearest Neighbor towards the New Normal During the Covid-19 Period in Indonesia,” 2022. doi: 10.33633/tc.v21i1.5446.

A. Yoga Pratama et al., “Analisis Sentimen Media Sosial Twitter Dengan Algoritma K-Nearest Neighbor Dan Seleksi Fitur Chi-Square (Kasus Omnibus Law Cipta Kerja),” 2021. doi: Vol 5, No 2 (2021).

R. M. Candra and A. Nanda Rozana, “Klasifikasi Komentar Bullying pada Instagram Menggunakan Metode K-Nearest Neighbor,” IT Journal Research and Development, vol. 5, no. 1, pp. 45–52, Jul. 2020, doi: 10.25299/itjrd.2020.vol5(1).4962.

A. Noviyanti, Y. Umaidah, R. Mayasari, U. Singaperbangsa, and K. Abstract, “Analisis Sentimen Pada Pembelajaran Daring Menggunakan Metode K-Nearest Neightbour (Studi Kasus: SMA Negeri 3 Cikampek),” Jurnal Ilmiah Wahana Pendidikan, 2022, doi: 10.5281/zenodo.6943200.

M. Sholeh, D. Andayati, R. Yuliana Rachmawati, P. Studi Informatika, and F. Teknologi Informasi dan Bisnis, “DATA MINING MODEL KLASIFIKASI MENGGUNAKAN ALGORITMA K-NEAREST NEIGHBOR DENGAN NORMALISASI UNTUK PREDIKSI PENYAKIT DIABETES.” 2022, doi: 12(02):77-87.

D. Ferarizki, M. Fikry, F. Yanto, and F. Insani, “Klasifikasi Sentimen Masyarakat di Twitter Terhadap Ancaman Resesi Ekonomi 2023 dengan Metode K-Nearest Neighbor,” vol. 4, no. 2, 2023, doi: 10.30865/klik.v4i2.1315.

A. Deviyanto, M. R. Didik Wahyudi, and T. Informatika UIN Sunan Kalijaga Yogyakarta Jl Marsda Adi Sucipto No, “PENERAPAN ANALISIS SENTIMEN PADA PENGGUNA TWITTER MENGGUNAKAN METODE K-NEAREST NEIGHBOR,” Jurnal Informatika Sunan Kalijaga, vol. 3, no. 1, pp. 1–13, 2018

J. A. Septian, T. M. Fahrudin, and A. Nugroho, “Analisis Sentimen Pengguna Twitter Terhadap Polemik Persepakbolaan Indonesia Menggunakan Pembobotan TF-IDF dan K-Nearest Neighbor,” JOURNAL OF INTELLIGENT SYSTEMS AND COMPUTATION, vol. 1, no. 1, pp. 43–49, 2019, doi: https://doi.org/10.52985/insyst.v1i1.36.

C. Heltroyce, G. Feoh, and I. Made Dwi Ardiada, “SENTIMENT ANALYSIS ON THE INCREASE OF FUEL OIL PRICES USING THE K-NEAREST NEIGHBOR ALGORITHM ANALISIS SENTIMEN TERHADAP KENAIKAN HARGA BAHAN BAKAR MINYAK MENGGUNAKAN ALGORITMA K-NEAREST NEIGHBOR,” 2024. doi: Vol. 3, No.1 April 2024.

A. Asro’i and H. Februariyanti, “Analisis Sentimen Pengguna Twitter terhadap Perpanjangan PPKM Menggunakan Metode K-Nearest Neighbor,” Jurnal Khatulistiwa Informatika, vol. 10, no. 1, pp. 17–24, 2022.

S. Lonang and D. Normawati, “Klasifikasi Status Stunting Pada Balita Menggunakan K-Nearest Neighbor Dengan Feature Selection Backward Elimination,” JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 6, no. 1, p. 49, Jan. 2022, doi: 10.30865/mib.v6i1.3312.

N. Basidt, E. Supriyadi, and A. Susilo, “Perbandingan Algoritma Klasifikasi dalam Analisis Sentimen Opini Masyarakat tentang Kenaikan Harga BBM” 2023

R. Noviantho, A. Siswo, R. Ansori, and R. R. Septiawan, “ANALISIS SENTIMEN PADA KOMENTAR VIDEO ULASAN MAKANAN DARI SALURAN YOUTUBE BERBAHASA INDONESIA MENGGUNAKAN K-NEAREST NEIGHBOR SENTIMENT ANALYSIS ON VIDEO COMMENTS ABOUT FOOD REVIEW FROM INDONESIAN YOUTUBE CHANNELS USING K-NEAREST NEIGHBOR.” 2021


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Analisis Sentimen Terhadap Sebuah Figur Publik di Twitter Menggunakan Metode K-Nearest Neighbor

Dimensions Badge

ARTICLE HISTORY


Published: 2024-06-19
Abstract View: 154 times
PDF Download: 86 times

Issue

Section

Articles

Most read articles by the same author(s)