Peningkatan Performa Klasifikasi Sentimen Tweet Kaesang Menggunakan Naïve Bayes dengan PSO pada Dataset Kecil
DOI:
https://doi.org/10.30865/klik.v4i6.1939Keywords:
Kaesang Pangarep; Sentiment Classification; PSO; Naïve Bayes; Social MediaAbstract
After the news of Kaesang's appointment as the Chairman of the Indonesian Solidarity Party (PSI), various speculations emerged on social media, particularly on Twitter (X). This study aims to classify sentiments regarding Kaesang's appointment as PSI Chairman using the Naïve Bayes algorithm optimized with Particle Swarm Optimization (PSO). The data used in this study consists tweets about Kaesang and tweets related to COVID-19. The text preprocessing process includes cleaning, case folding, tokenizing, stemming, and stopword removal. TF-IDF is used to represent words in vector form. In the initial experiment, Naïve Bayes performed classification using Kaesang data combined with COVID-19 data, with 300 data points for each label. Particle Swarm Optimization was used to improve the performance of the Naïve Bayes algorithm. The experiment results showed that the model tested with test data achieved the highest f1-score of 50%.
Downloads
References
S.A. Dainamang, N. Hayatin, D.R. Chandranegara, Analisis Sentimen Media Sosial Twiiter terhadap RUU Omnibus Law dengan Metode Naive Bayes dan Particle Swarm Optimization, Komputika J. Sist. Komput. 11 (2022) 211–218. https://doi.org/10.34010/komputika.v11i2.6037.
N. Hayatin, G.I. Marthasari, L. Nuraini, Optimization of Sentiment Analysis for Indonesian Presidential Election using Naïve Bayes and Particle Swarm Optimization, J. Online Inform. 5 (2020) 81–88. https://doi.org/10.15575/join.v5i1.558.
Emir Yanwardhana, Kaesang Jadi Ketum PSI Bikin Heboh! Parpol Buka Suara, CNBC Indones. (2023). https://www.cnbcindonesia.com/news/20230926142517-4-475661/kaesang-jadi-ketum-psi-bikin-heboh-parpol-buka-suara (accessed April 23, 2024).
M.K. Anam, B.N. Pikir, M.B. Firdaus, Penerapan Na ??ve Bayes Classifier, K-Nearest Neighbor (KNN) dan Decision Tree untuk Menganalisis Sentimen pada Interaksi Netizen danPemeritah, MATRIK J. Manajemen, Tek. Inform. Dan Rekayasa Komput. 21 (2021) 139–150. https://doi.org/10.30812/matrik.v21i1.1092.
A.F. Nugraha, Naïve Bayes dan Support Vector Machine Berbasis PSO untuk Seleksi Fitur pada Sentiment Analysis, Innov. Res. Informatics 4 (2022) 56–61. https://doi.org/10.37058/innovatics.v4i2.5291.
T.M. Shami, A.A. El-Saleh, M. Alswaitti, Q. Al-Tashi, M.A. Summakieh, S. Mirjalili, Particle Swarm Optimization: A Comprehensive Survey, IEEE Access 10 (2022) 10031–10061. https://doi.org/10.1109/ACCESS.2022.3142859.
T. Astuti, Y. Astuti, Analisis Sentimen Review Produk Skincare Dengan Naïve Bayes Classifier Berbasis Particle Swarm Optimization (PSO), J. Media Inform. Budidarma 6 (2022) 1806. https://doi.org/10.30865/mib.v6i4.4119.
Rayuwati, Husna Gemasih, Irma Nizar, Implementasi Algoritma Naive Bayes Untuk Memprediksi Tingkat Penyebaran Covid, Jural Ris. Rumpun Ilmu Tek. 1 (2022) 38–46. https://doi.org/10.55606/jurritek.v1i1.127.
N.B. Muliawan, I.A. Sulistijono, Indonesian Journal of Computer Science, Indones. J. Comput. Sci. 12 (2023) 284–301. https://doi.org/https://doi.org/10.33022/ijcs.v12i1.3135.
S. Dey, S. Wasif, D.S. Tonmoy, S. Sultana, J. Sarkar, M. Dey, A Comparative Study of Support Vector Machine and Naive Bayes Classifier for Sentiment Analysis on Amazon Product Reviews, 2020 Int. Conf. Contemp. Comput. Appl. IC3A 2020 (2020) 217–220. https://doi.org/10.1109/IC3A48958.2020.233300.
Yuyun, Nurul Hidayah, Supriadi Sahibu, Algoritma Multinomial Naïve Bayes Untuk Klasifikasi Sentimen Pemerintah Terhadap Penanganan Covid-19 Menggunakan Data Twitter, J. RESTI (Rekayasa Sist. Dan Teknol. Informasi) 5 (2021) 820–826. https://doi.org/10.29207/resti.v5i4.3146.
T. Safitri, Y. Umaidah, I. Maulana, Analisis Sentimen Pengguna Twitter Terhadap Grup Musik BTS Menggunakan Algoritma Support Vector Machine, J. Appl. Informatics Comput. 7 (2023) 28–35. https://doi.org/10.30871/jaic.v7i1.5039.
D. Atmajaya, A. Febrianti, H. Darwis, Metode SVM dan Naive Bayes untuk Analisis Sentimen ChatGPT di Twitter, Indones. J. Comput. Sci. 12 (2023) 2173–2181. https://doi.org/10.33022/ijcs.v12i4.3341.
Surya Agustian, Rahmat Abdillah, Muhammad Irfansyah, Arah baru penelitian klasifikasi teks: Memaksimalkan Kinerja Klasifikasi Sentimen dari Data Terbatas, MALCOM (Indonesia J. Mach. Learn. Comput. 4 (2024).
M. Ihsan, Benny Sukma Negara, Surya Agustian, LSTM (Long Short Term Memory) for Sentiment COVID-19 Vaccine Classification on Twitter, Digit. Zo. J. Teknol. Inf. Dan Komun. 13 (2022) 79–89. https://doi.org/10.31849/digitalzone.v13i1.9950.
M. Sahbuddin, S. Agustian, Support Vector Machine Method with Word2vec for Covid-19 Vaccine Sentiment Classification on Twitter, J. Informatics Telecommun. Eng. 6 (2022) 288–297. https://doi.org/10.31289/jite.v6i1.7534.
U. Naseem, I. Razzak, P.W. Eklund, A survey of pre-processing techniques to improve short-text quality: a case study on hate speech detection on twitter, Multimed. Tools Appl. 80 (2021) 35239–35266. https://doi.org/10.1007/s11042-020-10082-6.
M.A. Rosid, A.S. Fitrani, I.R.I. Astutik, N.I. Mulloh, H.A. Gozali, Improving Text Preprocessing for Student Complaint Document Classification Using Sastrawi, IOP Conf. Ser. Mater. Sci. Eng. 874 (2020). https://doi.org/10.1088/1757-899X/874/1/012017.
M. Liang, T. Niu, Research on Text Classification Techniques Based on Improved TF-IDF Algorithm and LSTM Inputs, Procedia Comput. Sci. 208 (2022) 460–470. https://doi.org/10.1016/j.procs.2022.10.064.
M. Akkaya, "Applying Particle Swarm Optimization: New Solutions and Cases for Optimized Portfolios," International Series in Operations Research & Management Science, vol. 306, pp. 392, 2021. doi: 10.1007/978-3-030-70281-6.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Peningkatan Performa Klasifikasi Sentimen Tweet Kaesang Menggunakan Naïve Bayes dengan PSO pada Dataset Kecil
ARTICLE HISTORY
Issue
Section
Copyright (c) 2024 Muhammad Ravil, Surya Agustian, Muhammad Fikry, Fitri Insani
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).