Peningkatan Performa Klasifikasi Sentimen Tweet Kaesang Menggunakan Naïve Bayes dengan PSO pada Dataset Kecil


Authors

  • Muhammad Ravil Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia
  • Surya Agustian Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia
  • Muhammad Fikry Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia
  • Fitri Insani Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia

DOI:

https://doi.org/10.30865/klik.v4i6.1939

Keywords:

Kaesang Pangarep; Sentiment Classification; PSO; Naïve Bayes; Social Media

Abstract

After the news of Kaesang's appointment as the Chairman of the Indonesian Solidarity Party (PSI), various speculations emerged on social media, particularly on Twitter (X). This study aims to classify sentiments regarding Kaesang's appointment as PSI Chairman using the Naïve Bayes algorithm optimized with Particle Swarm Optimization (PSO). The data used in this study consists tweets about Kaesang and tweets related to COVID-19. The text preprocessing process includes cleaning, case folding, tokenizing, stemming, and stopword removal. TF-IDF is used to represent words in vector form. In the initial experiment, Naïve Bayes performed classification using Kaesang data combined with COVID-19 data, with 300 data points for each label. Particle Swarm Optimization was used to improve the performance of the Naïve Bayes algorithm. The experiment results showed that the model tested with test data achieved the highest f1-score of 50%.

Downloads

Download data is not yet available.

References

S.A. Dainamang, N. Hayatin, D.R. Chandranegara, Analisis Sentimen Media Sosial Twiiter terhadap RUU Omnibus Law dengan Metode Naive Bayes dan Particle Swarm Optimization, Komputika J. Sist. Komput. 11 (2022) 211–218. https://doi.org/10.34010/komputika.v11i2.6037.

N. Hayatin, G.I. Marthasari, L. Nuraini, Optimization of Sentiment Analysis for Indonesian Presidential Election using Naïve Bayes and Particle Swarm Optimization, J. Online Inform. 5 (2020) 81–88. https://doi.org/10.15575/join.v5i1.558.

Emir Yanwardhana, Kaesang Jadi Ketum PSI Bikin Heboh! Parpol Buka Suara, CNBC Indones. (2023). https://www.cnbcindonesia.com/news/20230926142517-4-475661/kaesang-jadi-ketum-psi-bikin-heboh-parpol-buka-suara (accessed April 23, 2024).

M.K. Anam, B.N. Pikir, M.B. Firdaus, Penerapan Na ??ve Bayes Classifier, K-Nearest Neighbor (KNN) dan Decision Tree untuk Menganalisis Sentimen pada Interaksi Netizen danPemeritah, MATRIK J. Manajemen, Tek. Inform. Dan Rekayasa Komput. 21 (2021) 139–150. https://doi.org/10.30812/matrik.v21i1.1092.

A.F. Nugraha, Naïve Bayes dan Support Vector Machine Berbasis PSO untuk Seleksi Fitur pada Sentiment Analysis, Innov. Res. Informatics 4 (2022) 56–61. https://doi.org/10.37058/innovatics.v4i2.5291.

T.M. Shami, A.A. El-Saleh, M. Alswaitti, Q. Al-Tashi, M.A. Summakieh, S. Mirjalili, Particle Swarm Optimization: A Comprehensive Survey, IEEE Access 10 (2022) 10031–10061. https://doi.org/10.1109/ACCESS.2022.3142859.

T. Astuti, Y. Astuti, Analisis Sentimen Review Produk Skincare Dengan Naïve Bayes Classifier Berbasis Particle Swarm Optimization (PSO), J. Media Inform. Budidarma 6 (2022) 1806. https://doi.org/10.30865/mib.v6i4.4119.

Rayuwati, Husna Gemasih, Irma Nizar, Implementasi Algoritma Naive Bayes Untuk Memprediksi Tingkat Penyebaran Covid, Jural Ris. Rumpun Ilmu Tek. 1 (2022) 38–46. https://doi.org/10.55606/jurritek.v1i1.127.

N.B. Muliawan, I.A. Sulistijono, Indonesian Journal of Computer Science, Indones. J. Comput. Sci. 12 (2023) 284–301. https://doi.org/https://doi.org/10.33022/ijcs.v12i1.3135.

S. Dey, S. Wasif, D.S. Tonmoy, S. Sultana, J. Sarkar, M. Dey, A Comparative Study of Support Vector Machine and Naive Bayes Classifier for Sentiment Analysis on Amazon Product Reviews, 2020 Int. Conf. Contemp. Comput. Appl. IC3A 2020 (2020) 217–220. https://doi.org/10.1109/IC3A48958.2020.233300.

Yuyun, Nurul Hidayah, Supriadi Sahibu, Algoritma Multinomial Naïve Bayes Untuk Klasifikasi Sentimen Pemerintah Terhadap Penanganan Covid-19 Menggunakan Data Twitter, J. RESTI (Rekayasa Sist. Dan Teknol. Informasi) 5 (2021) 820–826. https://doi.org/10.29207/resti.v5i4.3146.

T. Safitri, Y. Umaidah, I. Maulana, Analisis Sentimen Pengguna Twitter Terhadap Grup Musik BTS Menggunakan Algoritma Support Vector Machine, J. Appl. Informatics Comput. 7 (2023) 28–35. https://doi.org/10.30871/jaic.v7i1.5039.

D. Atmajaya, A. Febrianti, H. Darwis, Metode SVM dan Naive Bayes untuk Analisis Sentimen ChatGPT di Twitter, Indones. J. Comput. Sci. 12 (2023) 2173–2181. https://doi.org/10.33022/ijcs.v12i4.3341.

Surya Agustian, Rahmat Abdillah, Muhammad Irfansyah, Arah baru penelitian klasifikasi teks: Memaksimalkan Kinerja Klasifikasi Sentimen dari Data Terbatas, MALCOM (Indonesia J. Mach. Learn. Comput. 4 (2024).

M. Ihsan, Benny Sukma Negara, Surya Agustian, LSTM (Long Short Term Memory) for Sentiment COVID-19 Vaccine Classification on Twitter, Digit. Zo. J. Teknol. Inf. Dan Komun. 13 (2022) 79–89. https://doi.org/10.31849/digitalzone.v13i1.9950.

M. Sahbuddin, S. Agustian, Support Vector Machine Method with Word2vec for Covid-19 Vaccine Sentiment Classification on Twitter, J. Informatics Telecommun. Eng. 6 (2022) 288–297. https://doi.org/10.31289/jite.v6i1.7534.

U. Naseem, I. Razzak, P.W. Eklund, A survey of pre-processing techniques to improve short-text quality: a case study on hate speech detection on twitter, Multimed. Tools Appl. 80 (2021) 35239–35266. https://doi.org/10.1007/s11042-020-10082-6.

M.A. Rosid, A.S. Fitrani, I.R.I. Astutik, N.I. Mulloh, H.A. Gozali, Improving Text Preprocessing for Student Complaint Document Classification Using Sastrawi, IOP Conf. Ser. Mater. Sci. Eng. 874 (2020). https://doi.org/10.1088/1757-899X/874/1/012017.

M. Liang, T. Niu, Research on Text Classification Techniques Based on Improved TF-IDF Algorithm and LSTM Inputs, Procedia Comput. Sci. 208 (2022) 460–470. https://doi.org/10.1016/j.procs.2022.10.064.

M. Akkaya, "Applying Particle Swarm Optimization: New Solutions and Cases for Optimized Portfolios," International Series in Operations Research & Management Science, vol. 306, pp. 392, 2021. doi: 10.1007/978-3-030-70281-6.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Peningkatan Performa Klasifikasi Sentimen Tweet Kaesang Menggunakan Naïve Bayes dengan PSO pada Dataset Kecil

Dimensions Badge

ARTICLE HISTORY


Published: 2024-06-25
Abstract View: 156 times
PDF Download: 61 times

Issue

Section

Articles