Klasifikasi Sentimen Masyarakat di Twitter Terhadap Ganjar Pranowo dengan Metode Support Vector Machine


Authors

  • Syaiful Azhar Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia
  • Yusra Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia
  • Muhammad Fikry Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia
  • Surya Agustian Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia
  • Iis Afrianty Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia

DOI:

https://doi.org/10.30865/klik.v4i3.1537

Keywords:

Twitter; Ganjar Pranowo; Classification; Support Vector Machine

Abstract

The classification of public sentiment towards Ganjar Pranowo on Twitter can provide insights into his popularity, support, or criticism. This research aims to classify public sentiment towards Ganjar Pranowo on Twitter using the Support Vector Machine (SVM) method. The research data consists of 4000 tweets collected from Twitter. After undergoing preprocessing, these tweets are classified using SVM into positive or negative classes. The classification method is optimized to produce the most optimal model by testing the influence of feature selection stages and SVM parameter tuning. The data is divided into 80% training (TRAIN_SET) and 20% testing (TEST_SET). The optimal model is validated using 10% of the randomly selected TRAIN_SET for validation data. Sixteen experiments are conducted to explore the optimal model, with the highest validation results (top rank 4 models) tested on the TEST_SET, yielding F1-scores of 84.13%, 84.13%, 84.13%, and 84.13% for experiment IDs 1, 7, 14, and 16, respectively. In this research, SVM proves to be sufficiently effective in classifying sentiment-related tweets about Ganjar Pranowo on Twitter

Downloads

Download data is not yet available.

References

S. Rahmah, “Personal Branding Ganjar Pranowo untuk Membangun Komunikasi Politik di Media Sosial Instagram,” Jurnal Interaksi?: Jurnal Ilmu Komunikasi, vol. 5, no. 1, pp. 94–101, 2021.

D. Fatma Sjoraida, R. Dewi, A. Noorlistyanto Adi, and A. Kirana Dipa, “Penggunaan Media Sosial Dalam Membangun Reputasi Anggota Legislatif di Jawa Barat,” PRofesi Humas, vol. 6, no. 1, pp. 89–110, 2021.

I. M. P. Gede, P. Pasek, O. Mahawardana, and P. R. Nurbawa, “Analisis Sentimen Berdasarkan Opini Dari Media Sosial Twitter Terhadap ‘Figure Pemimpin’ Menggunakan Python,” Jurnal Manajemen Dan Teknologi Informasi, vol. 13, no. 1, pp. 22–28, 2023.

R. Tineges, A. Triayudi, and I. D. Sholihati, “Analisis Sentimen Terhadap Layanan Indihome Berdasarkan Twitter Dengan Metode Klasifikasi Support Vector Machine (SVM),” Jurnal Media Informatika Budidarma, vol. 4, no. 3, pp. 650–658, Jul. 2020..

D. Darwis, E. S. Pratiwi, and A. F. O. Pasaribu, “Penerapan Algoritma SVM Untuk Analisis Sentimen Pada Data Twitter Komisi Pemberantasan Korupsi Republik Indonesia,” Edutic - Scientific Journal of Informatics Education, vol. 7, no. 1, pp. 1–11, 2020.

N. Aprilia Putri, H. April Lia, H. Shofa Shofia, T. Tukino, and P. Bayu, “Analisis Sentimen Calon Presiden 2024 Menggunakan Algoritma SVM Pada Media Sosial Twitter,” JOINTECS (Journal of Information Technology and Computer Science), vol. 8, no. 1, pp. 11–18, 2023.

A. P. Giovani, A. Ardiansyah, T. Haryanti, L. Kurniawati, and W. Gata, “Analisis Sentimen Aplikasi Ruang Guru di Twitter Menggunakan Algoritma Klasifikasi,” Jurnal Teknoinfo, vol. 14, no. 2, pp. 115–124, Jul. 2020.

O. Zoellanda A.Tane, K. Muslim Lhaksmana, and F. Nhita, “Analisis Sentimen Pada Twitter Tentang Calon Presiden 2019 Menggunakan Metode SVM (Support Vector Machine),” eProceedings of Engineering, vol. 6, no. 2, pp. 9716–9725, 2019.

V. Kevin, S. Que, A. Iriani, and H. D. Purnomo, “Analisis Sentimen Transportasi Online Menggunakan Support Vector Machine Berbasis Particle Swarm Optimization ( Online Transportation Sentiment Analysis Using Support Vector Machine Based on Particle Swarm Optimization ),” vol. 9, no. 2, pp. 162–170, 2020.

L. B. Ilmawan and M. A. Mude, “Perbandingan Metode Klasifikasi Support Vector Machine dan Naïve Bayes Untuk Analisis Sentimen Pada Ulasan Tekstual di Google Play Store,” ILKOM Jurnal Ilmiah, vol. 12, no. 2, pp. 154–161, 2020.

A. M. Pravina, I. Cholissodin, and P. P. Adikara, “Analisis Sentimen Tentang Opini Maskapai Penerbangan Pada Dokumen Twitter Menggunakan Algoritma Support Vector Machine (SVM),” Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 3, no. 3, pp. 2789–2797, 2019.

B. Laurensz and S. Eko, “Analisis Sentimen Masyarakat Terhadap Tindakan Vaksinasi Dalam Upaya Mengatasi Pandemi Covid-19,” Jurnal Nasional Teknik Elektro dan Teknologi Informasi, vol. 10, no. 2, pp. 118–123, 2021.

H. S. Utama, D. Rosiyadi, B. S. Prakoso, and D. Ariadarma, “Analisis Sentimen Sistem Ganjil Genap di Tol Bekasi Menggunakan Algoritma Support Vector Machine,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 3, no. 2, pp. 243–250, 2019.

A. Zikri, A. Zikri, and S. Agustian, “Penerapan Support Vector Machine dan FastText untuk Mendeteksi Hate Speech dan Abusive pada Twitter,” Jurnal Media Informatika Budidarma, vol. 7, no. 1, pp. 436–443, 2023.

P. Arsi and R. Waluyo, “Analisis Sentimen Wacana Pemindahan Ibu Kota Indonesia Menggunakan Algoritma Support Vector Machine (SVM),” Jurnal Teknologi Informasi dan Ilmu Komputer, vol. 8, no. 1, p. 147, 2021, doi: 10.25126/jtiik.0813944.

D. Anjas Ramadhan, “Analisis Sentimen Program Acara di SCTV Pada Twitter Menggunakan Metode Naive Bayes dan Support Vector Machine,” eProceedings of Engineering, vol. 6, no. 2, pp. 9736–9743, 2019.

B. Pamungkas, “Analisis Sentimen Twitter Menggunakan Metode Support Vector Machine (SVM) pada Kasus Benih Lobster 2020,” Journal of Informatics, Information System, Software Engineering and Applications (INISTA), vol. 3, no. 2, pp. 10–20, 2021.

M. I. Petiwi, A. Triayudi, and I. D. Sholihati, “Analisis Sentimen Gofood Berdasarkan Twitter Menggunakan Metode Naïve Bayes dan Support Vector Machine,” Jurnal Media Informatika Budidarma, vol. 6, no. 1, pp. 542–550, Jan. 2022.

R. Wati and S. Ernawati, “Analisis Sentimen Persepsi Publik Mengenai PPKM Pada Twitter Berbasis SVM Menggunakan Python,” Jurnal Teknik Informatika Unika St. Thomas (JTIUST), vol. 06, no. 02, pp. 241–247, 2021.

M. Sahbuddin and S. Agustian, “Support Vector Machine Method with Word2vec For Covid-19 Vaccine Sentiment Classification On Twitter,” Journal Of Informatics And Telecommunication Engineering, vol. 6, no. 1, pp. 288–297, Jul. 2022.

M. M. Kusair and S. Agustian, “SVM Method With FastText Representation Featurefor Classification Of Twitter Sentiments Regarding The Covid-19 Vaccination Program,” Jurnal Teknologi Informasi Dan Komunikasi Digital Zone, vol. 13, no. 1, Mei 2022, pp. 140–150, 2022.

I. B. G. Sarasvananda, D. Selivan, M. L. Radhitya, and and I. N. T. A. Putra, “Analisis Sentimen Pada Pembelajaran Daring Di Indonesia Melalui Twitter Menggunakan Naïve Bayes Classifier,” SINTECH Journal, vol. 5, no. 2, pp. 227–233, 2022.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Klasifikasi Sentimen Masyarakat di Twitter Terhadap Ganjar Pranowo dengan Metode Support Vector Machine

Dimensions Badge

ARTICLE HISTORY


Published: 2023-12-22
Abstract View: 166 times
PDF Download: 125 times

Most read articles by the same author(s)