Deep Learning Menggunakan Algoritma Xception dan Augmentasi Flip Pada Klasifikasi Kematangan Sawit
DOI:
https://doi.org/10.30865/klik.v4i6.1938Keywords:
Xception; CNN; Augmentasi Flip; Adam; Palm MaturityAbstract
Palm oil is an important commodity in Indonesia, especially as Indonesia is the highest palm oil exporting country in the world. Ripe palm fruit is marked by a change in color of the fruit from black to reddish yellow. Apart from that, immature palm fruit has a negative and significant effect on CPO production. The data collection process was carried out by directly taking pictures of palm fruit on oil palm plantations and data obtained from Kaggle. The total amount of data is 1000 images and 1000 data resulting from flip augmentation. The Xception algorithm is an algorithm in deep learning which stands for Extreme version of Inception. This combination was then proven to provide better accuracy in classifying images from a dataset. The optimizer used is the optimizer in TensorFlow, namely Adam (Adaptive Moment Estimation) using learning rate and dropout values. Images of mature and immature palm oil were classified using the Xception algorithm with augmented and without augmented data. In addition, experiments were carried out by changing the parameter values ??of learning rate to 0.1, 0.01, 0.001 and dropout to 0.1, 0.01, 0.001. It was found that the data division was (90;10) with the best accuracy reaching 95%. Test parameters carried out by trialling were proven to increase accuracy when compared to without using parameters and flip augmentation. The best accuracy of the Xception model is 95% on augmented data with a learning rate of 0.001 and a dropout of 0.1.
Downloads
References
M. Lambok, F. Sitorus, E. N. Akoeb, R. Sembiring, and M. A. Siregar, “AGRISAINS: Jurnal Ilmiah Magister Agribisnis Peningkatan Produksi Crude Palm Oil Melalui Kriteria Matang Panen Tandan Buah Segar untuk Optimalisasi Pendapatan Perusahaan Improving Crude Palm Oil Production Through Fresh Fruit Harvest Criteria for Optimization of Company Income,” Jurnal Ilmiah Magister Agribisnis, vol. 2, no. 1, pp. 26–32, 2020, [Online].
F. Murgianto, E. Edyson, A. Ardiyanto, S. K. Putra, and L. Prabowo, “Potential Content of Palm Oil at Various Levels of Loose Fruit in Oil Palm Circle,” Jurnal Agro Industri Perkebunan, pp. 91–98, Oct. 2021, doi: 10.25181/jaip.v9i2.2161.
I. U. P. Rangkuti, “Rendemen dan Komponen Minor Minyak Sawit Mentah Berdasarkan Tingkat Kematangan Buah pada Elevasi Tinggi,” Agrotekma: Jurnal Agroteknologi dan Ilmu Pertanian, vol. 3, no. 1, p. 9, Dec. 2018, doi: 10.31289/agr.v3i1.1933.
M. Y. M. A. Mansour, K. D. Dambul, and K. Y. Choo, “Object Detection Algorithms for Ripeness Classification of Oil Palm Fresh Fruit Bunch,” International Journal of Technology, vol. 13, no. 6, pp. 1326–1335, 2022, doi: 10.14716/ijtech.v13i6.5932.
A. Septiarini, A. Sunyoto, H. Hamdani, A. A. Kasim, F. Utaminingrum, and H. R. Hatta, “Machine vision for the maturity classification of oil palm fresh fruit bunches based on color and texture features,” Sci Hortic, vol. 286, Aug. 2021, doi: 10.1016/j.scienta.2021.110245.
A. W. Setiawan and A. R. Ananda, “Pengembangan Sistem Penilaian Kematangan Tandan Buah Segar Kelapa Sawit Menggunakan Citra 680 dan 750 Nm,” vol. 7, no. 2, 2020, doi: 10.25126/jtiik.202072603.
S. Ashari, G. J. Yanris, and I. Purnama, “Oil Palm Fruit Ripeness Detection using Deep Learning,” Sinkron, vol. 7, no. 2, pp. 649–656, May 2022, doi: 10.33395/sinkron.v7i2.11420.
A. Y. Saleh and E. Liansitim, “Palm oil classification using deep learning,” Science in Information Technology Letters, vol. 1, no. 1, pp. 1–8, Apr. 2020, doi: 10.31763/sitech.v1i1.1.
J. O. Carnagie, A. R. Prabowo, E. P. Budiana, and I. K. Singgih, “Essential Oil Plants Image Classification Using Xception Model,” in Procedia Computer Science, Elsevier B.V., 2022, pp. 395–402. doi: 10.1016/j.procs.2022.08.048.
C. Upasana, A. S. Tewari, and J. P. Singh, “An Attention-based Pneumothorax Classification using Modified Xception Model,” in Procedia Computer Science, Elsevier B.V., 2022, pp. 74–82. doi: 10.1016/j.procs.2022.12.403.
A. Abbas, S. Jain, M. Gour, and S. Vankudothu, “Tomato plant disease detection using transfer learning with C-GAN synthetic images,” Comput Electron Agric, vol. 187, Aug. 2021, doi: 10.1016/j.compag.2021.106279.
F. Harrou, A. Dairi, A. Dorbane, and Y. Sun, “Energy consumption prediction in water treatment plants using deep learning with data augmentation,” Results in Engineering, vol. 20, Dec. 2023, doi: 10.1016/j.rineng.2023.101428.
Suharjito, G. N. Elwirehardja, and J. S. Prayoga, “Oil palm fresh fruit bunch ripeness classification on mobile devices using deep learning approaches,” Comput Electron Agric, vol. 188, Sep. 2021, doi: 10.1016/j.compag.2021.106359.
M. S. H. Talukder and A. K. Sarkar, “Nutrients deficiency diagnosis of rice crop by weighted average ensemble learning,” Smart Agricultural Technology, vol. 4, Aug. 2023, doi: 10.1016/j.atech.2022.100155.
Irfan, Desi & Rosnelly, Rika & Wahyuni, Masri & Samudra, Jaka & Rangga, Aditia., "Perbandingan Optimasi Sgd, Adadelta, Dan Adam Dalam Klasifikasi Hydrangea Menggunakan Cnn," JOURNAL OF SCIENCE AND SOCIAL RESEARCH, vol. 5, p. 244, 2022. doi: 10.54314/jssr.v5i2.789.
S. Mehta, C. Paunwala and B. Vaidya, ‘CNN based Traffic Sign Classification using Adam Optimizer,’ 2019 International Conference on Intelligent Computing and Control Systems (ICCS), Madurai, India, 2019, pp. 1293-1298, doi: 10.1109/ICCS45141.2019.9065537.
E. N. Cahyo, E. Susanti, and R. Y. Ariyana, “Model Machine Learning Untuk Klasifikasi Kesegaran Daging Menggunakan Arsitektur Transfer Learning Xception,” Jurnal Sistem dan Teknologi Informasi (JustIN), vol. 11, no. 2, p. 371, Jul. 2023, doi: 10.26418/justin.v11i2.57517.
A. Mumuni and F. Mumuni, “Data augmentation: A comprehensive survey of modern approaches,” Array, vol. 16. Elsevier B.V., Dec. 01, 2022. doi: 10.1016/j.array.2022.100258.
H. A. Pratiwi, M. Cahyanti, and M. Lamsani, “IMPLEMENTASI DEEP LEARNING FLOWER SCANNER MENGGUNAKAN METODE CONVOLUTIONAL NEURAL NETWORK,” Sebatik, vol. 25, no. 1, pp. 124–130, Jun. 2021, doi: 10.46984/sebatik.v25i1.1297.
F. H. Kuwil, “A new feature extraction approach of medical image based on data distribution skew,” Neuroscience Informatics, vol. 2, no. 3, p. 100097, Sep. 2022, doi: 10.1016/j.neuri.2022.100097.
R. A. Tilasefana and R. E. Putra, “Penerapan Metode Deep Learning Menggunakan Algoritma CNN Dengan Arsitektur VGG NET Untuk Pengenalan Cuaca,” Journal of Informatics and Computer Science, vol. 05, 2023.
D. Marcella and S. Devella, “Klasifikasi Penyakit Mata Menggunakan Convolutional Neural Network Dengan Arsitektur VGG-19,” vol. 3, no. 1, pp. 60–70, 2022.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Deep Learning Menggunakan Algoritma Xception dan Augmentasi Flip Pada Klasifikasi Kematangan Sawit
ARTICLE HISTORY
Issue
Section
Copyright (c) 2024 Fathan Fanrita Masaugi, Febi Yanto, Elvia Budianita, Suwanto Sanjaya, Fadhilah Syafria
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).