Deep Learning Menggunakan Algoritma Xception dan Augmentasi Flip Pada Klasifikasi Kematangan Sawit


Authors

  • Fathan Fanrita Masaugi Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia
  • Febi Yanto Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia
  • Elvia Budianita Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia
  • Suwanto Sanjaya Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia
  • Fadhilah Syafria Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia

DOI:

https://doi.org/10.30865/klik.v4i6.1938

Keywords:

Xception; CNN; Augmentasi Flip; Adam; Palm Maturity

Abstract

Palm oil is an important commodity in Indonesia, especially as Indonesia is the highest palm oil exporting country in the world. Ripe palm fruit is marked by a change in color of the fruit from black to reddish yellow. Apart from that, immature palm fruit has a negative and significant effect on CPO production. The data collection process was carried out by directly taking pictures of palm fruit on oil palm plantations and data obtained from Kaggle. The total amount of data is 1000 images and 1000 data resulting from flip augmentation. The Xception algorithm is an algorithm in deep learning which stands for Extreme version of Inception. This combination was then proven to provide better accuracy in classifying images from a dataset. The optimizer used is the optimizer in TensorFlow, namely Adam (Adaptive Moment Estimation) using learning rate and dropout values. Images of mature and immature palm oil were classified using the Xception algorithm with augmented and without augmented data. In addition, experiments were carried out by changing the parameter values ??of learning rate to 0.1, 0.01, 0.001 and dropout to 0.1, 0.01, 0.001. It was found that the data division was (90;10) with the best accuracy reaching 95%. Test parameters carried out by trialling were proven to increase accuracy when compared to without using parameters and flip augmentation. The best accuracy of the Xception model is 95% on augmented data with a learning rate of 0.001 and a dropout of 0.1.

Downloads

Download data is not yet available.

References

M. Lambok, F. Sitorus, E. N. Akoeb, R. Sembiring, and M. A. Siregar, “AGRISAINS: Jurnal Ilmiah Magister Agribisnis Peningkatan Produksi Crude Palm Oil Melalui Kriteria Matang Panen Tandan Buah Segar untuk Optimalisasi Pendapatan Perusahaan Improving Crude Palm Oil Production Through Fresh Fruit Harvest Criteria for Optimization of Company Income,” Jurnal Ilmiah Magister Agribisnis, vol. 2, no. 1, pp. 26–32, 2020, [Online].

F. Murgianto, E. Edyson, A. Ardiyanto, S. K. Putra, and L. Prabowo, “Potential Content of Palm Oil at Various Levels of Loose Fruit in Oil Palm Circle,” Jurnal Agro Industri Perkebunan, pp. 91–98, Oct. 2021, doi: 10.25181/jaip.v9i2.2161.

I. U. P. Rangkuti, “Rendemen dan Komponen Minor Minyak Sawit Mentah Berdasarkan Tingkat Kematangan Buah pada Elevasi Tinggi,” Agrotekma: Jurnal Agroteknologi dan Ilmu Pertanian, vol. 3, no. 1, p. 9, Dec. 2018, doi: 10.31289/agr.v3i1.1933.

M. Y. M. A. Mansour, K. D. Dambul, and K. Y. Choo, “Object Detection Algorithms for Ripeness Classification of Oil Palm Fresh Fruit Bunch,” International Journal of Technology, vol. 13, no. 6, pp. 1326–1335, 2022, doi: 10.14716/ijtech.v13i6.5932.

A. Septiarini, A. Sunyoto, H. Hamdani, A. A. Kasim, F. Utaminingrum, and H. R. Hatta, “Machine vision for the maturity classification of oil palm fresh fruit bunches based on color and texture features,” Sci Hortic, vol. 286, Aug. 2021, doi: 10.1016/j.scienta.2021.110245.

A. W. Setiawan and A. R. Ananda, “Pengembangan Sistem Penilaian Kematangan Tandan Buah Segar Kelapa Sawit Menggunakan Citra 680 dan 750 Nm,” vol. 7, no. 2, 2020, doi: 10.25126/jtiik.202072603.

S. Ashari, G. J. Yanris, and I. Purnama, “Oil Palm Fruit Ripeness Detection using Deep Learning,” Sinkron, vol. 7, no. 2, pp. 649–656, May 2022, doi: 10.33395/sinkron.v7i2.11420.

A. Y. Saleh and E. Liansitim, “Palm oil classification using deep learning,” Science in Information Technology Letters, vol. 1, no. 1, pp. 1–8, Apr. 2020, doi: 10.31763/sitech.v1i1.1.

J. O. Carnagie, A. R. Prabowo, E. P. Budiana, and I. K. Singgih, “Essential Oil Plants Image Classification Using Xception Model,” in Procedia Computer Science, Elsevier B.V., 2022, pp. 395–402. doi: 10.1016/j.procs.2022.08.048.

C. Upasana, A. S. Tewari, and J. P. Singh, “An Attention-based Pneumothorax Classification using Modified Xception Model,” in Procedia Computer Science, Elsevier B.V., 2022, pp. 74–82. doi: 10.1016/j.procs.2022.12.403.

A. Abbas, S. Jain, M. Gour, and S. Vankudothu, “Tomato plant disease detection using transfer learning with C-GAN synthetic images,” Comput Electron Agric, vol. 187, Aug. 2021, doi: 10.1016/j.compag.2021.106279.

F. Harrou, A. Dairi, A. Dorbane, and Y. Sun, “Energy consumption prediction in water treatment plants using deep learning with data augmentation,” Results in Engineering, vol. 20, Dec. 2023, doi: 10.1016/j.rineng.2023.101428.

Suharjito, G. N. Elwirehardja, and J. S. Prayoga, “Oil palm fresh fruit bunch ripeness classification on mobile devices using deep learning approaches,” Comput Electron Agric, vol. 188, Sep. 2021, doi: 10.1016/j.compag.2021.106359.

M. S. H. Talukder and A. K. Sarkar, “Nutrients deficiency diagnosis of rice crop by weighted average ensemble learning,” Smart Agricultural Technology, vol. 4, Aug. 2023, doi: 10.1016/j.atech.2022.100155.

Irfan, Desi & Rosnelly, Rika & Wahyuni, Masri & Samudra, Jaka & Rangga, Aditia., "Perbandingan Optimasi Sgd, Adadelta, Dan Adam Dalam Klasifikasi Hydrangea Menggunakan Cnn," JOURNAL OF SCIENCE AND SOCIAL RESEARCH, vol. 5, p. 244, 2022. doi: 10.54314/jssr.v5i2.789.

S. Mehta, C. Paunwala and B. Vaidya, ‘CNN based Traffic Sign Classification using Adam Optimizer,’ 2019 International Conference on Intelligent Computing and Control Systems (ICCS), Madurai, India, 2019, pp. 1293-1298, doi: 10.1109/ICCS45141.2019.9065537.

E. N. Cahyo, E. Susanti, and R. Y. Ariyana, “Model Machine Learning Untuk Klasifikasi Kesegaran Daging Menggunakan Arsitektur Transfer Learning Xception,” Jurnal Sistem dan Teknologi Informasi (JustIN), vol. 11, no. 2, p. 371, Jul. 2023, doi: 10.26418/justin.v11i2.57517.

A. Mumuni and F. Mumuni, “Data augmentation: A comprehensive survey of modern approaches,” Array, vol. 16. Elsevier B.V., Dec. 01, 2022. doi: 10.1016/j.array.2022.100258.

H. A. Pratiwi, M. Cahyanti, and M. Lamsani, “IMPLEMENTASI DEEP LEARNING FLOWER SCANNER MENGGUNAKAN METODE CONVOLUTIONAL NEURAL NETWORK,” Sebatik, vol. 25, no. 1, pp. 124–130, Jun. 2021, doi: 10.46984/sebatik.v25i1.1297.

F. H. Kuwil, “A new feature extraction approach of medical image based on data distribution skew,” Neuroscience Informatics, vol. 2, no. 3, p. 100097, Sep. 2022, doi: 10.1016/j.neuri.2022.100097.

R. A. Tilasefana and R. E. Putra, “Penerapan Metode Deep Learning Menggunakan Algoritma CNN Dengan Arsitektur VGG NET Untuk Pengenalan Cuaca,” Journal of Informatics and Computer Science, vol. 05, 2023.

D. Marcella and S. Devella, “Klasifikasi Penyakit Mata Menggunakan Convolutional Neural Network Dengan Arsitektur VGG-19,” vol. 3, no. 1, pp. 60–70, 2022.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Deep Learning Menggunakan Algoritma Xception dan Augmentasi Flip Pada Klasifikasi Kematangan Sawit

Dimensions Badge

ARTICLE HISTORY


Published: 2024-06-25
Abstract View: 157 times
PDF Download: 81 times

Issue

Section

Articles

Most read articles by the same author(s)