Implementasi VGG 16 dan Augmentasi Zoom Untuk Klasifikasi Kematangan Sawit


Authors

  • Kaisyar Universitas Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia
  • Febi Yanto Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia
  • Elvia Budianita Universitas Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia
  • Suwanto Sanjaya Universitas Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia
  • Fadhilah Syafria Universitas Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia

DOI:

https://doi.org/10.30865/klik.v4i6.1940

Keywords:

VGG16; Augmentation; Hyperparameter; Deep learning; Random Zoom

Abstract

Indonesia is a country that has very abundant palm oil plantations and makes palm oil one of the largest export commodities in Indonesia. Fruit maturity on oil palms has a significant influence on palm oil and kernel production. The level of ripeness in palm oil fruit can affect several contents in it, such as tocopherol content, yield and FFA. The classification will be divided into 2 classes, namely between ripe and immature fruit with data on 500 images of ripe fruit and 500 images of immature fruit, data taken from the Kaggle site and private gardens taken using a cellphone camera. The data that has been obtained is augmented which is useful for enriching the data to make it more abundant. Data augmentation uses zoom augmentation and makes the original 1000 data increase to 2000 data. The model used is VGG 16 which is part of deep learning. The existing dataset is then preprocessed, resized and rescaled, then divides the data into 3, namely train, test and valid data. After dividing the data, then carry out the classification process with VGG 16 and set the hyperparameters after that the model will learn with 20 epochs. The model will learn with 57 schemes to compare and find highest accuracy. After the model has finished learning, it is evaluated using a confusion matrix. The results obtained were that the 90:10 data division using data augmentation with a learning rate of 0.01 and a dropout of 0.001 obtained the best accuracy, reaching 93.8%.

Downloads

Download data is not yet available.

References

M. Lambok, F. Sitorus, E. N. Akoeb, R. Sembiring, and M. A. Siregar, “Peningkatan Produksi Crude Palm Oil Melalui Kriteria Matang Panen Tandan Buah Segar untuk Optimalisasi Pendapatan Perusahaan Improving Crude Palm Oil Production Through Fresh Fruit Harvest Criteria for Optimization of Company Income,” J. Ilm. Magister Agribisnis, vol. 2, no. 1, pp. 26–32, 2020, [Online].

J. Supriadi, G. Tabrani, and Isnaini, “As the Reap Indicator Observed From Morphological,” Jom Faperta, vol. 6, pp. 1–9, 2019.

D. Bayu, Priyambada, and G. Supriyanto, “Analisis Rendemen Minyak Kelapa Sawit ( CPO ) berdasarkan Tingkat Kematangan Buah di PT . Bumitama Gunajaya Agro,” vol. 1, no. September, pp. 2051–2060, 2023.

I. U. P. Rangkuti, “Rendemen dan Komponen Minor Minyak Sawit Mentah Berdasarkan Tingkat Kematangan Buah pada Elevasi Tinggi,” Agrotekma J. Agroteknologi dan Ilmu Pertan., vol. 3, no. 1, p. 9, 2018.

R. A. Sirait and G. Supriyanto, “Pengaruh Kematangan Buah Terhadap FFA dan Besarnya Kandungan Minyak di Dalamnya di Pabrik Kelapa Sawit,” Agroforetech, vol. 1, no. Gapksi 2022, p. 677, 2023.

M. Subramanian, V. Easwaramoorthy Sathiskumar, G. Deepalakshmi, J. Cho, and G. Manikandan, “A survey on hate speech detection and sentiment analysis using machine learning and deep learning models,” Alexandria Eng. J., vol. 80, no. August, pp. 110–121, 2023.

F. A. Junior and Suharjito, “Video based oil palm ripeness detection model using deep learning,” Heliyon, vol. 9, no. 1, p. e13036, 2023.

S. Yadav, Alpana, and S. Chand, “Automated Food image Classification using Deep Learning approach,” 2021 7th Int. Conf. Adv. Comput. Commun. Syst. ICACCS 2021, pp. 542–545, 2021.

A. S. Paymode and V. B. Malode, “Transfer Learning for Multi-Crop Leaf Disease Image Classification using Convolutional Neural Network VGG,” Artif. Intell. Agric., vol. 6, pp. 23–33, 2022.

K. Alomar, H. I. Aysel, and X. Cai, “Data Augmentation in Classification and Segmentation: A Survey and New Strategies,” J. Imaging, vol. 9, no. 2, 2023.

M. Xu, S. Yoon, A. Fuentes, and D. S. Park, “A Comprehensive Survey of Image Augmentation Techniques for Deep Learning,” Pattern Recognit., vol. 137, p. 109347, 2023.

M. Z. Islam, M. S. Hossain, R. Ul Islam, and K. Andersson, “Static hand gesture recognition using convolutional neural network with data augmentation,” 2019 Jt. 8th Int. Conf. Informatics, Electron. Vision, ICIEV 2019 3rd Int. Conf. Imaging, Vis. Pattern Recognition, icIVPR 2019 with Int. Conf. Act. Behav. Comput. ABC 2019, pp. 324–329, 2019.

M. Alkhaleefah, P. Kumar Chittem, V. P. Achhannagari, S. C. Ma, and Y. L. Chang, “The Influence of Image Augmentation on Breast Lesion Classification Using Transfer Learning,” 2020 Int. Conf. Artif. Intell. Signal Process. AISP 2020, pp. 0–4, 2020.

T. B. Sasongko, H. Haryoko, and A. Amrullah, “Analisis Efek Augmentasi Dataset dan Fine Tune pada Algoritma Pre-Trained Convolutional Neural Network (CNN),” J. Teknol. Inf. dan Ilmu Komput., vol. 10, no. 4, pp. 763–768, 2023.

P. Kamsing, P. Torteeka, and S. Yooyen, “Deep Convolutional Neural Networks for plane identification on Satellite imagery by exploiting transfer learning with a different optimizer,” Int. Geosci. Remote Sens. Symp., pp. 9788–9791, 2019.

I. Valova, C. Harris, T. Mai, and N. Gueorguieva, “Optimization of convolutional neural networks for imbalanced set classification,” Procedia Comput. Sci., vol. 176, pp. 660–669, 2020.

K. Cui, Z. Zhan, and C. Pan, “Applying Radam Method to improve treatment of Convolutional Neural Network on Banknote Identification,” Proc. - 2020 Int. Conf. Comput. Eng. Appl. ICCEA 2020, pp. 468–476, 2020.

G. W. Qiu, X. Yu, B. Sun, Y. Wang, and L. Zhang, “Metastatic Cancer Image Classification Based on Deep Learning Method,” 2021 IEEE Int. Conf. Consum. Electron. Comput. Eng. ICCECE 2021, no. Iccece, pp. 658–661, 2021.

D. O. Melinte and L. Vladareanu, “Facial Expressions Recognition for Human – Robot Interaction Using Deep Convolutional Neural,” 2020, [Online].

T. Chauhan, H. Palivela, and S. Tiwari, “International Journal of Information Management Data Insights Optimization and fine-tuning of DenseNet model for classification of COVID-19 cases in medical imaging,” Int. J. Inf. Manag. Data Insights, vol. 1, no. 2, p. 100020, 2021.

F. G. Febrinanto, C. Dewi, and A. T. Wiratno, “Implementasi Algoritme K-Means Sebagai Metode Segmentasi Citra Dalam Identifikasi Penyakit Daun Jeruk,” J. Pengemb. Teknol. Inf. dan Ilmu Komput. Univ. Brawijaya, vol. 2, no. 11, pp. 5375–5383, 2018.

K. L. Pham, K. M. Dang, L. P. Tang, and T. N. Nguyen, “GAN Generated Portraits Detection Using Modified VGG-16 and EfficientNet,” Proc. - 2020 7th NAFOSTED Conf. Inf. Comput. Sci. NICS 2020, pp. 344–349, 2020.

N. HIDAYATI, “Modifikasi Arsitektur Densenet121 Dengan Transfer Learning Untuk Deteksi Penyakit Tanaman Jagung Berdasarkan Citra Daun,” Angew. Chemie Int. Ed. 6(11), 951–952., pp. 2013–2015, 2021.

M. A. Muslim et al., Data Mining Algoritma C4.5 Disertai contoh kasus dan penerapannya dengan program computer. 2019.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Implementasi VGG 16 dan Augmentasi Zoom Untuk Klasifikasi Kematangan Sawit

Dimensions Badge

ARTICLE HISTORY


Published: 2024-06-25
Abstract View: 152 times
PDF Download: 103 times

Issue

Section

Articles

Most read articles by the same author(s)