Perbandingan Klasifikasi Citra CT-Scan Kanker Paru-Paru Menggunakan Image Enhancement CLAHE Pada EfficientNet-B0


Authors

  • Dzaky Abdillah Salafy Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia
  • Febi Yanto Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia
  • Surya Agustian Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia
  • Fitri Insani Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia

DOI:

https://doi.org/10.30865/klik.v4i3.1514

Keywords:

CLAHE; CT-Scan; EfficientNet-B0; Cancer; Classification; Lungs

Abstract

In recent years, there has been a significant increase in the global cancer related mortality rate. Among various cancer types, lung cancer has emerged as one of the highest incidence cases. Lung cancer predominantly affects males and is attributed to several factors, including exposure to cigarette smoke, long-term air pollution, and exposure to carcinogenic compounds such as radon, asbestos, arsenic, coal tar, and diesel fuel emissions. The growth of cancerous cells in the lungs can be detected using various imaging techniques, with CT-Scan being one of them. This research focuses on the classification of normal lung organs and those affected by cancerous cells. The classification process employs two types of data: original data and data processed with Contrast Limited Adaptive Histogram Equalization (CLAHE). The data is initially divided with 90:10 ratios before being trained using a Convolutional Neural Network (CNN). The CNN architecture used is EfficientNet-B0, with the assistance of different optimizers and learning rates. After testing, the model's performance is evaluated using a confusion matrix to compare the results between the use of original data and CLAHE-processed data. The use of CLAHE processed data yields higher evaluation metrics compared to the original data, achieving a precision of 87.9%, recall of 85.6%, F1-score of 85.11%, and accuracy of 85.29% in the 90:10 data split, with the Adam optimizer and a learning rate of 10-1. The research results reveal that the utilization of image enhancement, specifically Contrast Limited Adaptive Histogram Equalization (CLAHE), with an appropriate combination of clip limit and tile grid, can impact the model's performance in classifying image data.

Downloads

Download data is not yet available.

References

Advertorial, “Kanker Paru-paru: 7 Hal yang Perlu Anda Ketahui,” www.pikiran-rakyat.com. Accessed: Dec. 08, 2022. [Online]. Available: https://www.pikiran-rakyat.com/bandung-raya/pr-015756667/kanker-paru-7-hal-yang-perlu-anda-ketahui

Kurniyanto, “Bagaimana Kanker Paru dapat Diketahui Lebih Awal Sebelum Stadium Lanjut?,” www.yankes.kemkes.go.id. Accessed: Dec. 08, 2022. [Online]. Available: https://yankes.kemkes.go.id/view_artikel/1550/bagaimana-kanker-paru-dapat-diketahui-lebih-awal-sebelum-stadium lanjut#:~:text=Di Indonesia%2C berdasarkan data Globocan,laki (14%2C1%25).

L. Eldridge, “Lung Cancer in Men,” www.verywellhealth.com. Accessed: Dec. 08, 2022. [Online]. Available: https://www.verywellhealth.com/lung-cancer-in-men-2249258

N. Handayani, “Kanker dan Serba-Serbinya (Hari Kanker Sedunia 2022).” Accessed: Dec. 18, 2022. [Online]. Available: https://rsprespira.jogjaprov.go.id/kanker-dan-serba-serbinya-hari-kanker-sedunia-2022/

R. Fadli, “Kanker Paru.” Accessed: Dec. 18, 2022. [Online]. Available: https://www.halodoc.com/kesehatan/kanker-paru

N. Jawas and I. W. B. Sentana, “Deteksi Lung Nodule Otomatis dari Citra Medis Computed Tomography ( CT ) Scan dengan Operasi Morfology dan SVM,” Jurnal Sistem Dan Informatika, vol. 12, no. 2, pp. 140–148, 2018.

M. Faruk and N. Nafi’iyah, “Klasifikasi Kanker Kulit Berdasarkan Fitur Tekstur, Fitur Warna Citra Menggunakan SVM dan KNN,” Telematika, vol. 13, no. 2, pp. 100–109, 2020.

L. W. Astuti, “Ekstrasi Fitur Citra MRI Otak Menggunakan Data Wavelet Transform (DWT) untuk Klasifikasi Penyakit Tumor Otak,” Jurnal Ilmiah Informatika Global, vol. 10, no. 2, pp. 80–86, 2019, doi: 10.36982/jig.v10i2.854.

M. Farid Naufal, “Perbandingan, Analisis Svm, Algoritma Untuk, dan CNN,” Jurnal Teknologi Informasi dan Ilmu Komputer, vol. 8, no. 2, pp. 311–318, 2021, doi: 10.25126/jtiik.202184553.

D. Gunawan and H. Setiawan, “Convolutional Neural Network dalam Citra Medis,” KONSTELASI: Konvergensi Teknologi dan Sistem Informasi, vol. 2, no. 2, pp. 376–390, 2022, doi: 10.24002/konstelasi.v2i2.5367.

D. L. Y. Ikhwanul, J. Jasril, S. Sanjaya, L. Handayani, and F. Yanto, “Klasifikasi Citra Daging Sapi dan Babi Menggunakan CNN Alexnet dan Augmentasi Data,” Journal of Information System Research (JOSH), vol. 4, no. 4, Jul. 2023, doi: 10.47065/josh.v4i4.3702.

S. Lasniari, J. Jasril, S. Sanjaya, F. Yanto, and M. Affandes, “Klasifikasi Citra Daging Babi dan Daging Sapi Menggunakan Deep Learning Arsitektur ResNet-50 dengan Augmentasi Citra,” Jurnal Sistem Komputer Dan Informatika (JSON), vol. 3, no. 4, pp. 450–457, 2022.

M. F. Martias, J. Jasril, S. Sanjaya, L. Handayani, and F. Yanto, “Klasifikasi Citra Daging Sapi dan Daging Babi Menggunakan CNN Arsitektur EfficientNet-B6 dan Augmentasi Data,” Jurnal Sistem Komputer dan Informatika (JSON), vol. 4, no. 4, p. 642, Jun. 2023, doi: 10.30865/json.v4i4.6195.

M. Tan and Q. Le, “Efficientnet: Rethinking model scaling for convolutional neural networks,” in International conference on machine learning, PMLR, 2019, pp. 6105–6114.

S. M. Hassan, A. K. Maji, M. Jasi?ski, Z. Leonowicz, and E. Jasi?ska, “Identification of plant-leaf diseases using CNN and transfer-learning approach,” Electronics (Basel), vol. 10, no. 12, p. 1388, 2021.

W. G. Pamungkas, M. I. P. Wardhana, Z. Sari, and Y. Azhar, “Leaf Image Identification: CNN with EfficientNet-B0 and ResNet-50 Used to Classified Corn Disease,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 7, no. 2, pp. 326–333, Mar. 2023, doi: 10.29207/resti.v7i2.4736.

A. Shamila Ebenezer, S. Deepa Kanmani, M. Sivakumar, and S. Jeba Priya, “Effect of image transformation on EfficientNet model for COVID-19 CT image classification,” Mater Today Proc, vol. 51, pp. 2512–2519, 2022, doi: 10.1016/j.matpr.2021.12.121.

Dodi Andre Putra, J. Na` am, and Yuhandri, “Identifikasi Objek pada Citra Thorax X-Ray Pasien COVID-19 dengan Metode Contrast Limited Adaptive Histogram Equalization (CLAHE),” Jurnal Informasi dan Teknologi, vol. 4, pp. 33–38, 2022, doi: 10.37034/jidt.v4i1.184.

R. Moch Diar, R. Y. Fu’adah, and K. Usman, “Klasifikasi Penyakit Paru-Paru Berbasis Pengolahan Citra X Ray Menggunakan Convolutional Neural Network (Classification Of The Lung Diseases Based On X Ray Image Processing Using Convolutional Neural Network),” e-Proceeding of Engineering, vol. 9, no. 2, pp. 476–484, 2022.

T. Badriyah, D. B. Santoso, I. Syarif, and D. R. Syarif, “Improving stroke diagnosis accuracy using hyperparameter optimized deep learning,” International Journal of Advances in Intelligent Informatics, vol. 5, no. 3, pp. 256–272, 2019, doi: 10.26555/ijain.v5i3.427.

F. M. Hana and I. D. Maulida, “Analysis of contrast limited adaptive histogram equalization (CLAHE) parameters on finger knuckle print identification,” in Journal of Physics: Conference Series, IOP Publishing Ltd, Feb. 2021. doi: 10.1088/1742-6596/1764/1/012049.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Perbandingan Klasifikasi Citra CT-Scan Kanker Paru-Paru Menggunakan Image Enhancement CLAHE Pada EfficientNet-B0

Dimensions Badge

ARTICLE HISTORY


Published: 2023-12-22
Abstract View: 271 times
PDF Download: 206 times

Most read articles by the same author(s)