Penerapan Metode Backpropagation Neural Network untuk Klasifikasi Penyakit Stroke
DOI:
https://doi.org/10.30865/klik.v4i6.1956Keywords:
Backpropagation Neural Network; Classification; SMOTE; StrokeAbstract
Stroke is a non-communicable disease that can occur suddenly due to local or global disruption of brain function. The early symptoms of stroke are often difficult to recognize, causing many sufferers not to realize or feel the signs, so the death rate is quite high. This research aims to determine the ability of the Backpropagation Neural Network (BPNN) method in classifying stroke. The dataset used consists of 4891 medical records with stroke and non-stroke classes which include ten relevant variables (gender, age, hypertension, history of heart disease, BMI, blood sugar levels, and so on). This research runs three scenarios with the BPNN architecture model [19:25:1], [19:29:1], and [19:35:1] using a certain combination of variables, namely the comparison of training and testing data (90:10, 80 :20, 70:30), and learning rate 0.1; 0.01; 0.001. Test results with the highest average accuracy level of 96.14% were achieved with an architectural model of [19:29:1], a learning rate of 0.001, and a training and testing data distribution of 80:20. Based on testing, it can be concluded that BPNN is considered capable of classifying stroke
Downloads
References
Z. Zuriati and N. Qomariyah, “Klasifikasi Penyakit Stroke Menggunakan Algoritma K-Nearest Neighbor (KNN),” ROUTERS J. Sist. dan Teknol. Inf., vol. 1, no. 1, pp. 1–8, 2022, doi: 10.25181/rt.v1i1.2665.
N. A. Iskandar, I. Ernawati, and Y. Widiastiwi, “Klasifikasi Diagnosis Penyakit Stroke Dengan Menggunakan Metode Random Forest,” Semin. Nas. Mhs. Ilmu Komput. dan Apl., pp. 432–441, 2022, [Online]. Available: https://conference.upnvj.ac.id/index.php/senamika/article/view/2190
H. Bugis, “Metode Naïve Bayes Untuk Memprediksi Penyakit Stroke,” J. SISKOM-KB (Sistem Komput. dan Kecerdasan Buatan), vol. 6, no. 1, pp. 8–14, 2022, doi: 10.47970/siskom-kb.v6i1.317.
K. Julita, I. Afrianty, S. Sanjaya, and F. Syafria, “Penerapan Fuzzy Backpropagation Neural Network dalam Klasifikasi Penyakit Stroke,” vol. 8, no. 2, 2023.
P. Govindarajan, R. K. Soundarapandian, A. H. Gandomi, R. Patan, P. Jayaraman, and R. Manikandan, “Classification of stroke disease using machine learning algorithms,” Neural Comput. Appl., vol. 32, no. 3, pp. 817–828, 2020, doi: 10.1007/s00521-019-04041-y.
Y. N. Paramitha, A. Nuryaman, A. Faisol, E. Setiawan, and D. E. Nurvazly, “Klasifikasi Penyakit Stroke Menggunakan Metode Naïve Bayes,” J. Siger Mat., vol. 04, no. 01, pp. 11–16, 2023, [Online]. Available: https://www.kaggle.com/datasets/zzettrkalpakbal/full-filled-
B. Tan, “Back Propagation Neural Network Based Stroke Prediction,” CIBDA 2022 - 3rd Int. Conf. Comput. Inf. Big Data Appl., no. February 2022, pp. 56–59, 2022.
S. J. A. Sarosa, F. Utaminingrum, and F. A. Bachtiar, “Breast cancer classification using GLCM and BPNN,” Int. J. Adv. Soft Comput. its Appl., vol. 11, no. 3, pp. 157–172, 2019.
P. N. Napitupulu, A. R. Damanik, and J. E. Napitupulu, “Implementasi Algoritma Backpropagation Jaringan Syaraf Tiruan Untuk Prediksi Angka Harapan Hidup Di Kota Jambi,” J. JPILKOM ( J. Penelit. Ilmu Komput. ), vol. 1, no. 1, pp. 10–15, 2023.
A. Fany Achmalia, S. Walid, I. Artikel, and S. Artikel, “Peramalan Penjualan Semen Menggunakan Backpropagation Neural Network Dan Recurrent Neural Network,” UNNES J. Math., vol. 9, no. 1, pp. 6–21, 2020, [Online]. Available: http://journal.unnes.ac.id/sju/index.php/ujm
H. Elvaningsih, Elisawati, F. Tawakal, and Masrizal, “Seminar Nasional Sains dan Teknologi Informasi (SENSASI) Prediksi Stok Obat Menggunakan Metode Backpropagation (Studi Kasus: Puskesmas Dumai Barat),” Semin. Nas. Sains danTeknologi Inf., pp. 228–232, 2021, [Online]. Available: http://prosiding.seminar-id.com/index.php/sensasi/issue/archivePage%7C228
I. P. J. and A. A. Rao, “Prediction of Diabetes with a BPNN-NB ensemble classifier,” Int. J. Comput. Sci. Eng., vol. 7, no. 5, pp. 1652–1657, 2019, doi: 10.26438/ijcse/v7i5.16521657.
M. Waail et al., “Klasifikasi Jenis Kelengkeng Berdasarkan Morfologi Daun Dengan Ekstraksi Ciri RGB, GLCM, dan Bentuk Menggunakan Metode BPNN” vol. 4, no. 2, pp. 183–193, 2023.
Istiqomatul Fajriyah Yuliati, Septie Wulandary, and P. Sihombing, “Penerapan Metode SVM dan BPNN dalam Pengklasifikasian PUS di Jawa Barat,” J. Stat. dan Apl., vol. 4, no. 1, pp. 23–34, 2020, doi: 10.21009/jsa.04103.
F. Nabila, “Implementasi Algoritma C4.5 dalam Melakukan Klasifikasi Penyakit Stroke Otak,” J. Ekon. Vol. 18, Nomor 1 Maret201, vol. 2, no. 1, pp. 41–49, 2023.
M. I. Fikri, T. S. Sabrila, and Y. Azhar, “Perbandingan Metode Naïve Bayes dan Support Vector Machine pada Analisis Sentimen Twitter,” Smatika J., vol. 10, no. 02, pp. 71–76, 2020, doi: 10.32664/smatika.v10i02.455.
C. Herdian, A. Kamila, F. Feiters Tampinongkol, A. S. Kembau, G. Agung, and M. Budidarma, “One-Hot Encoding Feature Engineering Untuk Label-Based Data Studi Kasus Prediksi Harga Mobil Bekas,” J. Inf. Interaktif, vol. 9, no. 1, pp. 10–16, 2024.
M. Ibnu and C. Rachmatullah, “Penerapan SMOTE untuk Meningkatan Kinerja Klasifikasi Penilaian Kredit,” JURIKOM (Jurnal Ris. Komputer), vol. 10, no. 1, pp. 2407–389, 2023, doi: 10.30865/jurikom.v10i1.5612.
E. Sutoyo and M. A. Fadlurrahman, “Penerapan SMOTE untuk Mengatasi Imbalance Class dalam Klasifikasi Television Advertisement Performance Rating Menggunakan Artificial Neural Network,” J. Edukasi dan Penelit. Inform., vol. 6, no. 3, p. 379, 2020, doi: 10.26418/jp.v6i3.42896.
B. Hauriza, M. Muladi, and I. M. Wirawan, “Prediksi Tingkat Inflasi Bulanan Indonesia Menggunakan Metode Jaringan Saraf Tiruan,” J. Teknol. dan Inf., vol. 11, no. 2, pp. 152–167, 2021, doi: 10.34010/jati.v11i2.4924.
S. Janani, R. Thenmozhi, and L. S. Jayagopal, “Theoretical Investigations for the Verification of Shear Centre and Deflection of Sigma Section by Back Propagation Neural Network Using Python,” Arch. Civ. Eng., vol. 65, no. 2, pp. 181–192, 2019, doi: 10.2478/ace-2019-0027.
S. Rajasekaran and G. A. V PAI, NEURAL NETWORKS, FUZZY LOGIC AND GENETIC ALGORITHM: SYNTHESIS AND APPLICATIONS (WITH CD). PHI Learning, 2003. [Online]. Available: https://books.google.co.id/books?id=bVbj9nhvHd4C
M. A. Muslim et al., Data Mining Algoritma C4.5 Disertai contoh kasus dan penerapannya dengan program computer. 2019.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Penerapan Metode Backpropagation Neural Network untuk Klasifikasi Penyakit Stroke
ARTICLE HISTORY
Issue
Section
Copyright (c) 2024 Mohd Azhima, Iis Afrianty, Elvia Budianita, Siska Kurnia Gusti
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).