Social Network Analysis and Sentiment Classification of Robotic Restaurant Content using Naïve Bayes Classifier


Authors

  • Yerik Afrianto Singgalen Universitas Katolik Indonesia Atma Jaya, Jakarta, Indonesia

DOI:

https://doi.org/10.30865/klik.v4i4.1710

Keywords:

Social; Network; Sentiment; Classification; Restaurant

Abstract

Sentiment analysis is crucial in understanding public opinion, particularly in emerging technologies such as automation AI and robotic restaurant services. However, achieving accurate sentiment classification in sentiment analysis tasks poses challenges, especially when dealing with imbalanced data. This study employs the Cross-Industry Standard Process for Data Mining (CRISP-DM) through the Naive Bayes Classifier (NBC) algorithm and Synthetic Minority Over-sampling Technique (SMOTE) to address imbalanced data challenges in sentiment analysis. Social network analysis (SNA) collects and analyzes user-generated content related to automation AI and robotic restaurant services, providing insights into public sentiment. Additionally, the occurrence of frequently used words such as "people" (182), "food" (158), "jobs" (135), "robots" (137), "wage" (102), "work" (78), "robot" (79), "minimum" (78), "fast" (70), and "workers" (65) is examined. The performance of the NBC algorithm with and without SMOTE integration is compared. With SMOTE, the algorithm exhibits an accuracy of 70.11% +/- 3.52%, precision of 88.82% +/- 5.06%, recall of 46.06% +/- 6.13%, AUC of 0.967 +/- 0.016, and F-measure of 60.46% +/- 6.02%. Without SMOTE, the algorithm yields an accuracy of 48.90% +/- 4.36%, precision of 72.15% +/- 5.25%, recall of 44.32% +/- 7.15%, AUC of 0.777 +/- 0.051, and F-measure of 54.57% +/- 5.78%.  Recommendations to further enhance the algorithm's performance include exploring additional optimization techniques, such as feature engineering and ensemble methods, and continuing data collection and augmentation efforts to improve dataset representativeness. Regular monitoring and evaluation and iterative refinement based on evolving data patterns are also recommended to ensure sustained effectiveness in sentiment analysis tasks.

Downloads

Download data is not yet available.

References

Z. Li, F. Yuan, and Z. Zhao, “Robot restaurant experience and recommendation behaviour: based on text-mining and sentiment analysis from online reviews,” Curr. Issues Tour., pp. 1–15, 2024, doi: 10.1080/13683500.2024.2309140.

V. Sharma, M. Kapse, J. Poulose, and Y. Mahajan, “Robotic dining delight unravelling the key factors driving customer satisfaction in service robot restaurants using PLS-SEM and ML,” Cogent Bus. Manag., vol. 10, no. 3, 2023, doi: 10.1080/23311975.2023.2281053.

D. H. Zhu and W. Q. Zhang, “Do we have to know the hen that lays the eggs? How the disclosure timing of robot chef identity affects consumer perceived ethicality,” J. Sustain. Tour., vol. 0, no. 0, pp. 1–18, 2023, doi: 10.1080/09669582.2023.2266781.

J. Na Nongkhai, C. Suttikun, and P. Mahasuweerachai, “Why Young Consumers Engage with Mobile Self-Ordering Applications (MFOAs) at Restaurants During COVID-19: The Role of Functional and Psychological Factors,” J. Int. Food Agribus. Mark., vol. 0, no. 0, pp. 1–25, 2023, doi: 10.1080/08974438.2023.2255573.

P. Plumwongrot and P. Pholphirul, “Are Robots stealing jobs? Empirical evidence from 10 developing countries,” Econ. Innov. New Technol., vol. 32, no. 6, pp. 873–889, 2023, doi: 10.1080/10438599.2022.2051020.

G. El Hajal and B. Rowson, “The future of hospitality jobs,” Res. Hosp. Manag., vol. 10, no. 1, pp. 55–61, 2020, doi: 10.1080/22243534.2020.1790210.

O. Chehab, M. Bouzari, and S. Ilkhanizadeh, “Job Motivation Mediating the Effects of Standardization on Restaurant Frontline Employees’ Job Outcomes: Evidence from Lebanon,” J. Qual. Assur. Hosp. Tour., vol. 24, no. 6, pp. 836–858, 2023, doi: 10.1080/1528008X.2022.2089944.

S. Alotaibi, K. Shafieizadeh, and K. Alsumait, “Customers’ perceptions toward service robots at restaurants: The moderating role of consumer innovativeness and the mediating role of perceived hedonic benefits,” J. Qual. Assur. Hosp. Tour., vol. 00, no. 00, pp. 1–23, 2022, doi: 10.1080/1528008X.2022.2161693.

L. Xie, X. Liu, and D. Li, “The mechanism of value cocreation in robotic services: customer inspiration from robotic service novelty,” J. Hosp. Mark. Manag., vol. 31, no. 8, pp. 962–983, 2022, doi: 10.1080/19368623.2022.2112354.

M. Nuyken, D. Zilbershtein, and A. Rauf, “Generation Z’s perspective on restaurant service quality,” Res. Hosp. Manag., vol. 12, no. 3, pp. 309–318, 2022, doi: 10.1080/22243534.2023.2202495.

D. M. Zemke, C. Raab, and W. Han, “Factors influencing QSR guests’ acceptance of robotic technology,” J. Foodserv. Bus. Res., vol. 00, no. 00, pp. 1–21, 2023, doi: 10.1080/15378020.2023.2265795.

F. Seyito?lu, O. Ats?z, S. Ta?, and F. Kaya, “Double-edged perspectives on service robots: working with robots and robots’ future career impacts,” J. Teach. Travel Tour., vol. 23, no. 1, pp. 1–19, 2023, doi: 10.1080/15313220.2022.2076768.

H. Yang, H. Song, L. Xia, and A. Yang, “Understanding the consequences of robotic interaction quality and outcome quality: A three-phased affordance theory-based approach,” J. Hosp. Mark. Manag., vol. 00, no. 00, pp. 1–21, 2024, doi: 10.1080/19368623.2024.2308531.

F. Seyito?lu, O. Ats?z, and A. Acar, “The future of restaurant labour: evidence from the U.S. restaurants,” Curr. Issues Tour., vol. 0, no. 0, pp. 1–18, 2023, doi: 10.1080/13683500.2023.2280150.

A. Ndiuini and T. Baum, “Underemployment and lived experiences of migrant workers in the hotel industry: policy and industry implications,” J. Policy Res. Tour. Leis. Events, vol. 13, no. 1, pp. 36–58, 2021, doi: 10.1080/19407963.2020.1743487.

R. Katz, F. Callorda, and J. Jung, “The impact of automation on employment and its social implications: evidence from Chile,” Econ. Innov. New Technol., vol. 32, no. 5, pp. 646–662, 2023, doi: 10.1080/10438599.2021.1991798.

N. H. Md Saad, F. Mei Nie, and Z. Yaacob, “Exploring sentiment analysis of online food delivery services post COVID-19 pandemic: grabfood and foodpanda,” J. Foodserv. Bus. Res., vol. 00, no. 00, pp. 1–25, 2023, doi: 10.1080/15378020.2023.2294406.

J. Im, T. Song, Y. Lee, and J. Kim, “Confirmatory aspect-level opinion mining processes for tourism and hospitality research: a proposal of DiSSBUS,” Curr. Issues Tour., vol. 25, no. 12, pp. 1876–1894, 2022, doi: 10.1080/13683500.2021.1974357.

H. T. Phan, N. T. Nguyen, D. Hwang, and Y. S. Seo, “M2SA: a novel dataset for multi-level and multi-domain sentiment analysis,” J. Inf. Telecommun., vol. 7, no. 4, pp. 494–512, 2023, doi: 10.1080/24751839.2023.2229700.

A. Hashimoto, D. J. Telfer, and K. Telfer, “Eurocentric cultural theme parks in Japan: domestic tourists’ perspectives on place branding,” J. Tour. Cult. Chang., vol. 21, no. 3, pp. 344–363, 2023, doi: 10.1080/14766825.2023.2178314.

X. Li, J. Francois, and J. Kwon, “Investigating Consumers’ Online Restaurant Selection Behaviors Using Eye-tracking Technology and Retrospective Think-aloud Interviews,” Int. J. Hosp. Tour. Adm., vol. 24, no. 5, pp. 720–752, 2023, doi: 10.1080/15256480.2022.2055690.

N. Sangkaew and H. Zhu, “Understanding Tourists’ Experiences at Local Markets in Phuket: An Analysis of TripAdvisor Reviews,” J. Qual. Assur. Hosp. Tour., vol. 23, no. 1, pp. 89–114, 2022, doi: 10.1080/1528008X.2020.1848747.

G. M. Majid, I. Tussyadiah, Y. R. Kim, and A. Pal, “Intelligent automation for sustainable tourism: a systematic review,” J. Sustain. Tour., vol. 31, no. 11, pp. 2421–2440, 2023, doi: 10.1080/09669582.2023.2246681.

A. Rydzik and C. S. Kissoon, “Decent work and tourism workers in the age of intelligent automation and digital surveillance,” J. Sustain. Tour., vol. 30, no. 12, pp. 2860–2877, 2022, doi: 10.1080/09669582.2021.1928680.

X. Zhang and H. Jin, “How does smart technology, artificial intelligence, automation, robotics, and algorithms (STAARA) awareness affect hotel employees’ career perceptions? A disruptive innovation theory perspective,” J. Hosp. Mark. Manag., vol. 32, no. 2, pp. 264–283, 2023, doi: 10.1080/19368623.2023.2166186.

Y. A. Singgalen, “Analisis Performa Algoritma NBC , DT , SVM dalam Klasifikasi Data Ulasan Pengunjung Candi Borobudur Berbasis CRISP-DM,” Build. Informatics, Technol. Sci., vol. 4, no. 3, pp. 1634–1646, 2022, doi: 10.47065/bits.v4i3.2766.

Y. A. Singgalen, “Penerapan CRISP-DM dalam Klasifikasi Sentimen dan Analisis Perilaku Pembelian Layanan Akomodasi Hotel Berbasis Algoritma Decision Tree ( DT ),” J. Sist. Komput. dan Inform., vol. 5, no. 2, pp. 237–248, 2023, doi: 10.30865/json.v5i2.7081.

Y. A. Singgalen, “Analisis Perilaku Wisatawan Berdasarkan Data Ulasan di Website Tripadvisor Menggunakan CRISP-DM?: Wisata Minat Khusus Pendakian Gunung Rinjani dan Gunung Bromo,” J. Comput. Syst. Informatics, vol. 4, no. 2, pp. 326–338, 2023, doi: 10.47065/josyc.v4i2.3042.

Y. A. Singgalen, “Analisis Sentimen Wisatawan terhadap Taman Nasional Bunaken dan Top 10 Hotel Rekomendasi Tripadvisor Menggunakan Algoritma SVM dan DT berbasis CRISP-DM,” J. Comput. Syst. Informatics, vol. 4, no. 2, pp. 367–379, 2023, doi: 10.47065/josyc.v4i2.3092.

Y. A. Singgalen, “Analisis Sentimen Konsumen terhadap Food , Services , and Value di Restoran dan Rumah Makan Populer Kota Makassar Berdasarkan Rekomendasi Tripadvisor Menggunakan Metode CRISP-DM dan,” Build. Informatics, Technol. Sci., vol. 4, no. 4, pp. 1899–1914, 2023, doi: 10.47065/bits.v4i4.3231.

Y. A. Singgalen, “Analisis Sentimen Wisatawan terhadap Kualitas Layanan Hotel dan Resort di Lombok Menggunakan SERVQUAL dan CRISP-DM,” Build. Informatics, Technol. Sci., vol. 4, no. 4, pp. 1870–1882, 2023, doi: 10.47065/bits.v4i4.3199.

Y. A. Singgalen, “Penerapan Metode CRISP-DM dalam Klasifikasi Data Ulasan Pengunjung Destinasi Danau Toba Menggunakan Algoritma Naïve Bayes Classifier ( NBC ) dan Decision Tree ( DT ),” J. Media Inform. Budidarma, vol. 7, no. 3, pp. 1551–1562, 2023, doi: 10.30865/mib.v7i3.6461.

Y. A. Singgalen, “Analisis Sentimen Pengunjung Pulau Komodo dan Pulau Rinca di Website Tripadvisor Berbasis CRISP-DM,” J. Inf. Syst. Res., vol. 4, no. 2, pp. 614–625, 2023, doi: 10.47065/josh.v4i2.2999.

Y. A. Singgalen, “Analisis Sentimen dan Sistem Pendukung Keputusan Menginap di Hotel Menggunakan Metode CRISP-DM dan SAW,” J. Inf. Syst. Res., vol. 4, no. 4, pp. 1343–1353, 2023, doi: 10.47065/josh.v4i4.3917.

Y. A. Singgalen, “Penerapan Metode CRISP-DM untuk Optimalisasi Strategi Pemasaran STP (Segmenting , Targeting , Positioning) Layanan Akomodasi Hotel , Homestay , dan Resort,” J. Media Inform. Budidarma, vol. 7, no. 4, pp. 1980–1993, 2023, doi: 10.30865/mib.v7i4.6896.

M. Valeri and R. Baggio, “Italian tourism intermediaries: a social network analysis exploration,” Curr. Issues Tour., vol. 24, no. 9, pp. 1270–1283, 2021, doi: 10.1080/13683500.2020.1777950.

L. J. Hsu, W. Lin, and H. P. Yueh, “Connecting Twitter With Scholarly Networks: Exploring HCI Scholars’ Interactions From an SNA Approach,” IEEE Trans. Prof. Commun., vol. 65, no. 4, pp. 502–515, 2022, doi: 10.1109/TPC.2022.3205511.

R. Obiedat et al., “Sentiment Analysis of Customers’ Reviews Using a Hybrid Evolutionary SVM-Based Approach in an Imbalanced Data Distribution,” IEEE Access, vol. 10, pp. 22260–22273, 2022, doi: 10.1109/ACCESS.2022.3149482.

C. Cahyaningtyas, Y. Nataliani, and I. R. Widiasari, “Analisis Sentimen Pada Rating Aplikasi Shopee Menggunakan Metode Decision Tree Berbasis SMOTE,” Aiti, vol. 18, no. 2, pp. 173–184, 2021, doi: 10.24246/aiti.v18i2.173-184.

A. Andreyestha and Q. N. Azizah, “Analisa Sentimen Kicauan Twitter Tokopedia Dengan Optimalisasi Data Tidak Seimbang Menggunakan Algoritma SMOTE,” Infotek J. Inform. dan Teknol., vol. 5, no. 1, pp. 108–116, 2022, doi: 10.29408/jit.v5i1.4581.

V. A. Permadi, “Analisis Sentimen Menggunakan Algoritma Naive Bayes Terhadap Review Restoran di Singapura,” J. Buana Inform., vol. 11, no. 2, pp. 141–151, 2020, doi: 10.24002/jbi.v11i2.3769.

F. Ariani, Amir, N. Alam, and K. Rizal, “Klasifikasi Penetapan Status Karyawan Dengan Menggunakan Metode Naive Bayes,” J. Paradig., vol. 20, no. 2, pp. 33–38, 2018, doi: 10.31294/p.v.

H. A. R. Harpizon, R. Kurniawan, and ..., “Analisis Sentimen Komentar Di YouTube Tentang Ceramah Ustadz Abdul Somad Menggunakan Algoritma Naïve Bayes,” Anal. Sentimen …, 2022, [Online]. Available: http://repository.uin-suska.ac.id/59746/

F. Fitriana, E. Utami, and H. Al Fatta, “Analisis sentimen opini terhadap vaksin Covid-19 pada media sosial twitter menggunakan Support Vector Machine dan Naive Bayes,” J. Komtika (Komputasi …, 2021, [Online]. Available: https://journal.unimma.ac.id/index.php/komtika/article/view/5185

S. H. W. Chuah, E. C. X. Aw, and C. F. Cheng, “A silver lining in the COVID-19 cloud: examining customers’ value perceptions, willingness to use and pay more for robotic restaurants,” J. Hosp. Mark. Manag., vol. 31, no. 1, pp. 49–76, 2022, doi: 10.1080/19368623.2021.1926038.

F. Angelini, M. Castellani, and L. Vici, “Restaurant sector efficiency frontiers: a meta-analysis,” J. Foodserv. Bus. Res., vol. 27, no. 2, pp. 138–156, 2022, doi: 10.1080/15378020.2022.2077090.

J. Y. Choe, J. J. Kim, and J. Hwang, “Innovative robotic restaurants in Korea: merging a technology acceptance model and theory of planned behaviour,” Asian J. Technol. Innov., vol. 30, no. 2, pp. 466–489, 2022, doi: 10.1080/19761597.2021.2005466.

J. Hwang, H. Kim, J. J. Kim, and I. Kim, “Investigation of perceived risks and their outcome variables in the context of robotic restaurants,” J. Travel Tour. Mark., vol. 38, no. 3, pp. 263–281, 2021, doi: 10.1080/10548408.2021.1906826.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Social Network Analysis and Sentiment Classification of Robotic Restaurant Content using Naïve Bayes Classifier

Dimensions Badge

ARTICLE HISTORY


Published: 2024-02-27
Abstract View: 159 times
PDF Download: 128 times

Most read articles by the same author(s)

1 2 > >>