Pengelompokan Produk Berdasarkan Data Persediaan Barang Menggunakan Metode Elbow dan K-Medoid
DOI:
https://doi.org/10.30865/klik.v4i3.1525Keywords:
Clustering; Data Mining; Inventory; Elbow; K-MedoidAbstract
Inventory has a very important role in the company, because it indirectly influences the company's income. If a company does not have inventory, it will experience the risk of not being able to fulfill consumer desires. One data mining technique that can help in processing data to obtain useful information is clustering. The aim of this research is to group inventory of goods, by attributes, initial quantity, quantity sold, and quantity available. Management of inventory data using data mining techniques with the elbow and K-Medoid methods. Then the data that has been grouped can make it easier for stores to determine inventory carefully in terms of procuring stock of goods or products. The results of this research are the use of the elbow method in determining the optimal number of clusters using Python at point 7 (cluster). The clustering results using the k-medoid method with elbow show 7 clusters using the RapidMiner tool. Cluster 0 has 145 products, cluster 1 has 135 products, cluster 2 has 200 products, cluster 3 has 76 products, cluster 4 has 101 products, cluster 5 has 208 products, and cluster 6 has 135 products. Where cluster grouping is based on initial quantity, sold quantity and available quantity with the same or similar value. Clustering results using the k-medoid method without elbows, the clustering process uses 3 clusters with the RapitMiner tool. Cluster 0 has 169 products, cluster 1 has 410 products, and cluster 2 has 421 products. Cluster 0 grouping is based on quantity sold and available quantity, the value is the same, cluster grouping 1 is based on greater quantity sold, and cluster grouping 2 is based on greater quantity available. From the two analysis results it can be seen that the analysis using the k-medoid method with elbows is quite good because in determining the optimal number of clusters using the elbow method and the clustering results in grouping inventory are more effective.
Downloads
References
N. Purba, F. Ekonomi, D. Bisnis, I. Uin, S. Utara, and M. Yahya, “Revolusi Industri 4.0?: Peran Teknologi Dalam Eksistensi Penguasaan Bisnis Dan Implementasinya.”, Jurnal Prilaku dan Strategi Bisnis, vol. 9, no. 2, 2021
A. S. Amar, K. Mulyono, and S. Nurjanah, “Analisis Persediaan Stok Barang Dengan Menggunakan Metode Economic Order Quantity Di Ud Toko Plastik Hanif,” TEKNOSAINS: Jurnal Sains, Teknologi dan Informatika, vol. 8, no. 2, pp. 80–85, 2021.
D. Ramdhan, G. Dwilestari, R. Danar Dana, and A. Ajiz, “Clustering Data Persediaan Barang dengan Menggunakan Metode K-Means. Clustering Data Persediaan Barang dengan Menggunakan Metode K-Means,” MEANS (Media Informasi Analisa dan Sistem, vol. 7, no. 1, 2022, [Online]. Available: http://ejournal.ust.ac.id/index.php/Jurnal_Means/
I. Syah and A. Ahmadi, “Perencanaan Persediaan Produk Steering Handle Sepeda Motor Pada UD. Aji Batara Perkasa Dengan Menggunakan Metode ABC,” Jurnal Ilmiah Teknik Informatika dan Komunikasi, vol. 3, no. 2, pp. 125–143, 2023, doi: 10.55606/juitik.v3i2.505.
S. Aisah, I. Aknuranda, and A. N. Rusydi, “Sistem Pendukung Keputusan Untuk Pengelompokan Barang Terjual Pada PT Dasema Digi Persada Dengan Metode K-Means Clustering,” Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 4, no. 7, pp. 2309–2317, 2020, [Online]. Available: http://j-ptiik.ub.ac.id
B. Arief Setiawan, “Perbandingan Clustering Optimalisasi Stok Barang Menggunakan Algoritma K-Means Dan Algortima K-Medoids ( Studi Kasus?: Klinik Ben Waras ),” Proceeding Sendiu, 2021.
D. Marlina, N. Fauzer Putri, A. Fernando, and A. Ramadhan, “Implementasi Algoritma K-Medoids dan K-Means untuk Pengelompokkan Wilayah Sebaran Cacat pada Anak,” Jurnal CoreIT, vol. 4, no. 2, 2018.
S. Sindi et al., “Analisis Algoritma K-Medoids Clustering Dalam Pengelompokan Penyebaran Covid-19 Di Indonesia,” Jurnal Teknologi Informasi, vol. 4, no. 1, 2020.
D. Ayu, I. C. Dewi, and K. Pramita, “Analisis Perbandingan Metode Elbow dan Sillhouette pada Algoritma Clustering K-Medoids dalam Pengelompokan Produksi Kerajinan Bali,” 2019.
K. Pola et al., “Clustering Sales Patterns of Best Selling and Less Selling Products at El Jhon Bengkulu Stores Using the K-Medoid Method,” JURNAL KOMITEK, vol. 2, no. 2, pp. 637–642, 2022, doi: 10.53697/jkomitek.v2i2.
C. Nisa1 and W. Yustanti2, “Studi Perbandingan Algoritma Klastering Dalam Pengelompokan Persediaan Produk (Studi Kasus?: Subdirektorat Perencanaan Sarana Prasarana Dan Logistik PTN X),” JEISBI, vol. 02, no. 03, pp. 14–20, 2021.
S. Fulvi Intan, W. Elvira, S. Rahayu, and N. Nurfadilla, “SENTIMAS: Seminar Nasional Penelitian dan Pengabdian Masyarakat Comparison of the K-Means and K-Medoids Algorithms for Grouping Student Expenditures Perbandingan Algoritma K-Means dan K-Medoids untuk Pengelompokan Pengeluaran Mahasiswa,” SENTIMAS: Seminar Nasional Penelitian dan Pengabdian Masyarakat, pp. 35–40, 2023, [Online]. Available: https://journal.irpi.or.id/index.php/sentimas
N. Adawiyah, N. Sulistiyowati, and M. Jajuli, “Klasterisasi Kasus Kekerasan Terhadap Anak dan Perempuan Berdasarkan Algoritma K-Means,” Generation Journal, vol. 5, no. 2, 2021.
A. Winarta and W. J. Kurniawan, “Optimasi Cluster K-Means Menggunakan Metode Elbow Pada Data Pengguna Narkoba Dengan Pemrograman Python,” Jurnal Teknik Informatika Kaputama (JTIK), vol. 5, no. 1, 2021.
I. W. Septiani, Abd. C. Fauzan, and M. M. Huda, “Implementasi Algoritma K-Medoids Dengan Evaluasi Davies-Bouldin-Index Untuk Klasterisasi Harapan Hidup Pasca Operasi Pada Pasien Penderita Kanker Paru-Paru,” Jurnal Sistem Komputer dan Informatika (JSON), vol. 3, no. 4, p. 556, Jul. 2022, doi: 10.30865/json.v3i4.4055.
A. Sidik, E. T. B. Waluyo, and S. Susilawati, “Perancangan Sistem Informasi Laporan Persediaan Barang Jadi PT Duta Prima Plasindo,” JURNAL SISFOTEK GLOBAL, vol. 8, no. 1, 2018.
Ferawati, K. D. Fersiartha, Yusmalina, and I. Yuliana, “Analisis Pengaruh Persediaan Barang Dan Penjualan Terhadap Laba Perusahaan (Studi Kasus Cv Davin Jaya Karimun),” Jurnal Cafetaria, vol. 1, no. 2, pp. 33–34, 2020.
A. Ardiansyah, A. T. Zy, and A. Nugroho, “Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi 4.0 Internasional. Implementasi Data Mining Algoritma Apriori Pada Sistem Persediaan Obat (Studi Kasus Klinik Pratama Keluarga Kesehatan),” Journal of Information System, Applied, Management, Accounting and Research, vol. 7, no. 3, pp. 2598–8700, 2023, doi: 10.52362/jisamar.v7i3.1163.
R. Pujangga and A. Satoni Kurniawansyah, “Comparative Analysis of the K-Means Algorithm and the K-Medoid Algorithm in Clustering the Elderly Population,” Gatot Kaca Journal, vol. 2, no. 2, pp. 123–128, 2021, doi: 10.37638/gatotkaca.2.2.123-128.
A. Ayu, D. Sulistyawati, and M. Sadikin, “Penerapan Algoritma K-Medoids untuk Menentukan Segmentasi Pelanggan,” SISTEMASI: Jurnal Sistem Informasi, vol. 10, no. 3, pp. 516–526, 2021, [Online]. Available: http://sistemasi.ftik.unisi.ac.id
M. S. FIRDAUS, “Segmentasi Mutu Jalan Nasional Menggunakan Metode Clustering K-Medoids di Kabupaten Bandung Barat dan Kota Bandung,” Prosiding Sains Nasional dan Teknologi, vol. 12, no. 1, p. 431, Nov. 2022, doi: 10.36499/psnst.v12i1.7173.
E. Rahmah, E. Haerani, A. Nazir, S. Ramadhani, and T. Informatika UIN Sultan Syarif Kasim Riau Jl Soebrantas Km, “Penerapan Algoritma K-Medoids Clustering Untuk Menentukan Srategi Promosi Pada Data Mahasiswa (Studi Kasus?: Stikes Perintis Padang),” Jurnal Nasional Komputasi dan Teknologi Informasi, vol. 5, no. 3, 2022.
M. MKom and F. Dona Marleny, “Algoritma Pemrograman Menggunakan Python,” 2022. [Online]. Available: https://www.researchgate.net/publication/363769056
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Pengelompokan Produk Berdasarkan Data Persediaan Barang Menggunakan Metode Elbow dan K-Medoid
ARTICLE HISTORY
Issue
Section
Copyright (c) 2023 Nurafni Syahfitri, Elvia Budianita, Alwis Nazir, Iis Afrianty

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).