Klasifikasi Daging Sapi dan Daging Babi Menggunakan Convolutional Neural Network EfficientNet-B0 dengan Augmentasi Citra


Authors

  • Hafez Almirza Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia
  • Jasril Universitas Islam Negeri Sultan Syarif Kasim Riau, Indonesia
  • Suwanto Sanjaya Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia
  • Lestari Handayani Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia
  • Fadhilah Syafria Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia

DOI:

https://doi.org/10.30865/klik.v3i6.910

Keywords:

Classification; Convolutional Neural Network; EfficientNet-B0; Image; Augmentation

Abstract

The increase in counterfeit beef sales is in line with the growing demand for meat in Indonesia. Counterfeit meat, namely mixed beef and pork and pure pork sold as beef, can be distinguished using image classification. This study classifies pork, mixed, and beef using the Convolutional Neural Network (CNN) model of the EfficientNet-B0 architecture. This study uses the image augmentation method to augment the image with the aim of improving classification accuracy. The total original image is 900, while the total augmented image is 9000. The image data is divided using two data division ratios, namely 80:20 and 90:10. The highest classification accuracy results were obtained by a model using augmented images and a data division ratio of 90:10, with a combination of Adamax hyperparameter optimizer, Swish hidden activation, and a learning rate of 0.1, with an accuracy of 97.11%, precision of 97.14%, recall of 97.11%, and F1-Score of 97.11%. Meanwhile, the highest accuracy of the model using the original image is achieved by the model using a 90:10 division ratio with a combination of hyperparameter optimizer Adamax, hidden activation ReLU, and learning rate 0.01 with the results of accuracy 96.78%, precision 96.92%, recall 96.78%, and F1-Score 96.78%. The results show that the use of image augmentation methods can improve classification accuracy.

Downloads

Download data is not yet available.

References

I. Wahyudiyanta, “Polisi Bongkar Penjualan Daging Sapi Dicampur Daging Babi di Surabaya,” 2016. https://news.detik.com/berita-jawa-timur/d-3218411/polisi-bongkar-penjualan-daging-sapi-dicampur-daging-babi-di-surabaya (accessed Dec. 07, 2022).

S. Wiryono, “Fakta Kasus Daging Oplosan Sapi dan Babi di Tangerang, Kelabui Pembeli dengan Harga Murah Halaman all - Kompas.com,” 2020. https://megapolitan.kompas.com/read/2020/05/19/07120811/fakta-kasus-daging-oplosan-sapi-dan-babi-di-tangerang-kelabui-pembeli?page=all (accessed Dec. 07, 2022).

M. Iqbal, “Polisi Sebut Babi Disulap Jadi Daging ‘Sapi’ Beredar di 3 Kecamatan Bandung,” 2020. https://news.detik.com/berita-jawa-barat/d-5010943/polisi-sebut-babi-disulap-jadi-daging-sapi-beredar-di-3-kecamatan-bandung (accessed May 23, 2023).

E. Budianita, J. Jasril, and L. Handayani, “Implementasi Pengolahan Citra dan Klasifikasi K-Nearest Neighbour Untuk Membangun Aplikasi Pembeda Daging Sapi dan Babi Berbasis Web,” J. Sains dan Teknol. Ind., vol. 12, no. Vol 12, No 2 (2015): Juni 2015, pp. 242–247, 2015, [Online]. Available: http://ejournal.uin-suska.ac.id/index.php/sitekin/article/view/1005

L. Handayani et al., “Comparison of target Probabilistic Neural network (PNN) classification for beef and pork,” J. Theor. Appl. Inf. Technol., vol. 95, no. 12, pp. 2753–2760, 2017.

M. Malikhah, R. Sarno, and S. I. Sabilla, “Ensemble Learning for Optimizing Classification of Pork Adulteration in Beef Based on Electronic Nose Dataset,” Int. J. Intell. Eng. Syst., vol. 14, no. 4, pp. 44–55, 2021, doi: 10.22266/ijies2021.0831.05.

R. H. Laluma, B. Sugiarto, A. Santriyana, A. G. Azwar, N. Nurwathi, and G. Gunawan, “Klasifikasi Perbedaan Daging Sapi Dan Daging Babi Dengan Metode Convolutional Neural Network Berbasis Web,” Infotronik J. Teknol. Inf. dan Elektron., vol. 6, no. 1, p. 1, 2021, doi: 10.32897/infotronik.2021.6.1.603.

A. H. Artya, J. Jasril, S. Sanjaya, F. Syafria, and E. Budianita, “Implementasi Convolutional Neural Network Untuk Klasifikasi Daging Menggunakan Fitur Ekstraksi Tekstur dan Arsitektur AlexNet,” JURIKOM (Jurnal Ris. Komputer), vol. 9, no. 3, p. 635, 2022, doi: 10.30865/jurikom.v9i3.4177.

S. Lasniari, J. Jasril, S. Sanjaya, F. Yanto, and M. Affandes, “Klasifikasi Citra Daging Babi dan Daging Sapi Menggunakan Deep Learning Arsitektur ResNet-50 dengan Augmentasi Citra,” J. Sist. Komput. dan Inform., vol. 3, no. 4, p. 450, 2022, doi: 10.30865/json.v3i4.4167.

G. Y. Alhafis, S. Sanjaya, F. Syafria, and E. Budianita, “Klasifikasi Citra Daging Sapi dan Daging Babi Menggunakan Ekstraksi Ciri dan Convolutional Neural Network,” J. Ris. Komputer), vol. 9, no. 3, pp. 2407–389, 2022, doi: 10.30865/jurikom.v9i3.4175.

Bhupendra, K. Moses, A. Miglani, and P. Kumar Kankar, “Deep CNN-based damage classification of milled rice grains using a high-magnification image dataset,” Comput. Electron. Agric., vol. 195, p. 106811, Apr. 2022, doi: 10.1016/J.COMPAG.2022.106811.

B. Y. Phiadelvira, “Klasifikasi Kanker Serviks Berdasarkan Citra Kolposkopi Menggunakan Convolutional Neural Network (CNN) Model Alexnet,” 2021, doi: 10.33387/jiko.v4i1.2606.

F. Hu, G. S. Xia, J. Hu, and L. Zhang, “Transferring deep convolutional neural networks for the scene classification of high-resolution remote sensing imagery,” Remote Sens., vol. 7, no. 11, pp. 14680–14707, 2015, doi: 10.3390/rs71114680.

S. Khan, H. Rahmani, S. A. A. Shah, and M. Bennamoun, “A Guide to Convolutional Neural Networks for Computer Vision,” Synth. Lect. Comput. Vis., vol. 8, no. 1, pp. 1–207, 2018, doi: 10.2200/s00822ed1v01y201712cov015.

M. Tan and Q. V. Le, “EfficientNet: Rethinking model scaling for convolutional neural networks,” 36th Int. Conf. Mach. Learn. ICML 2019, vol. 2019-June, pp. 10691–10700, 2019, doi: https://doi.org/10.48550/arXiv.1905.11946.

N. M. Aszemi and P. D. D. Dominic, “Hyperparameter optimization in convolutional neural network using genetic algorithms,” Int. J. Adv. Comput. Sci. Appl., vol. 10, no. 6, pp. 269–278, 2019, doi: 10.14569/ijacsa.2019.0100638.

I. Valova, C. Harris, T. Mai, and N. Gueorguieva, “Optimization of convolutional neural networks for imbalanced set classification,” Procedia Comput. Sci., vol. 176, pp. 660–669, 2020, doi: 10.1016/j.procs.2020.09.038.

H. Aghdam and E. Heravi, Guide to Convolutional Neural Networks: A Practical Application to Traffic-Sign Detection and Classification. 2017. doi: 10.1007/978-3-319-57550-6.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Klasifikasi Daging Sapi dan Daging Babi Menggunakan Convolutional Neural Network EfficientNet-B0 dengan Augmentasi Citra

Dimensions Badge

ARTICLE HISTORY


Published: 2023-06-24
Abstract View: 369 times
PDF Download: 316 times

Issue

Section

Articles

Most read articles by the same author(s)