Analisis Sentimen Tanggapan Masyarakat Terhadap Kenaikan Biaya Haji Tahun 2023 Menggunakan Metode K- Nearest Neighbor (KNN)
DOI:
https://doi.org/10.30865/klik.v4i3.1471Keywords:
Hajj Cost Increase in 2023; Hajj Expenses; Twitter; Sentiment Analysis; K-Nearest NeighborAbstract
The Indonesian government implemented a policy of increasing the cost of Hajj in 2023, but the policy has attracted many positive and negative comments among the public. Public comments are taken from the social media network Twitter, because it contains a lot of information so that it attracts the interest of most people. With the increase in Hajj costs in 2023, it is necessary to conduct sentiment analysis. This study uses the K-Neearest Neighbor method because it is easy to apply and the data used are divided into two classes, positive and negative. The results of research on the application of the K-Nearest Neighbor method in sentiment analysis of the increase in Hajj costs in 2023 using 3,000 data taken from Twitter comments. The tweet data used, there were 1866 positive comments and 415 negative comments and the total net data of 2281, judging from the amount of positive data compared to negative data, obtained an accuracy value of 81.17% in 70:30 data sharing, 79.87% in 80:20 data sharing, 77.73% in 90:10 data sharing. Meanwhile, the highest accuracy value was 81.17% with 82.48% precision, 97.67% recall, F1- Score 89.43%. In this study, there were more positive responses, this proves that the increase in Hajj costs in 2023 using the K-Nearest Neighbor (KNN) method can be accepted by the community
Downloads
References
Nurhanisah, Yuli. "Biaya Haji Indonesia Tahun 2023." Indonesia Baik.Id Diakses Tanggal 24 Oktober 2023. https://indonesiabaik.id/infografis/biaya-haji-indonesia-tahun-2023
M. Riefky and W. Pramesti, “Sentiment Analysis of Southeast Asian Games (SEA Games) in Philippines 2019 Based on Opinion of Internet User of Social Media Twitter with K-Nearest Neighbor and Support Vector Machine,” J. Mat. Stat. dan Komputasi, vol. 17, no. 1, pp. 26–41, 2020, doi: 10.20956/jmsk.v17i1.9947.
F. Astuti, R. M. Candra, S. Agustian, and S. Ramadhani, “Klasifikasi Sentimen Masyarakat Terhadap Pemerintah Terkait Penerapan Kebijakan New Normal Menggunakan Metode K-Nearest Neighbor,” J. Nas. Komputasi dan Teknol. Inf., vol. 5, no. 3, pp. 531–538, 2022, doi: 10.32672/jnkti.v5i3.4455.
A. Y. Permana and M. Makmun, “Analisis Sentimen pada Teks Opini Penilaian Kinerja Dosen dengan Pendekatan Algoritma KNN,” J. Ilm. Komputasi, vol. 19, no. 1, pp. 39–50, 2020, doi: 10.32409/jikstik.19.1.154.
V. Alvian, A. Nilogiri, and H. Azizah, “Klasifikasi Siswa Berprestasi Menggunakan Metode K-Nearest Neighbor (KNN) Pada SMA Negeri 2 Situbondo,” J. Smart Teknol., vol. 3, no. 6, pp. 602–611, 2022, [Online]. Available: http://jurnal.unmuhjember.ac.id/index.php/JSTH.
S. S. Salim and J. Mayary, “Analisis Sentimen Pengguna Twitter Terhadap Dompet Elektronik Dengan Metode Lexicon Based Dan K – Nearest Neighbor,” J. Ilm. Inform. Komput., vol. 25, no. 1, pp. 1–17, 2020, doi: 10.35760/ik.2020.v25i1.2411.
Normah, B. Rifai, S. Vambudi, and R. Maulana, “Analisa Sentimen Perkembangan Vtuber Dengan Metode Support Vector Machine Berbasis SMOTE,” J. Tek. Komput. AMIK BSI, vol. 8, no. 2, pp. 174–180, 2022, doi: 10.31294/jtk.v4i2.
R. Putri Fitrianti, A. Kurniawati, D. Agusten, J. Sistem Informasi, and F. Ilmu Komputer dan Teknologi Informasi, “Implementasi Algoritma K-Nearest Neighbor Terhadap Analisis Sentimen Review Restoran Dengan Teks Bahasa Indonesia,” Semin. Nas. Apl. Teknol. Inf., pp. 1907–5022, 2019.
J. Homepage, S. R. Cholil, T. Handayani, R. Prathivi, and T. Ardianita, “IJCIT (Indonesian Journal on Computer and Information Technology) Implementasi Algoritma Klasifikasi K-Nearest Neighbor (KNN) Untuk Klasifikasi Seleksi Penerima Beasiswa,” IJCIT (Indonesian J. Comput. Inf. Technol., vol. 6, no. 2, pp. 118–127, 2021.
T. Wiratama Putra, A. Triayudi, and A. Andrianingsih, “Analisis Sentimen Pembelajaran Daring Menggunakan Metode Naïve Bayes, KNN, dan Decision Tree,” J. JTIK (Jurnal Teknol. Inf. dan Komunikasi), vol. 6, no. 1, pp. 20–26, 2022, doi: 10.35870/jtik.v6i1.368.
S. N. Arafah and F. Fathoni, “Sentiment Analysis Pada Masyarakat Terhadap LRT Kota Palembang Menggunakan Metode Improved K-Nearest Neighbor,” J. Media Inform. Budidarma, vol. 6, no. 3, p. 1554, 2022, doi: 10.30865/mib.v6i3.4434.
N. S. P. Juana, E. Haerani, F. Syafria, and E. Budianita, “Analisis Sentimen Tanggapan Masyarakat Terhadap Calon Presiden 2024 Ridwan Kamil Menggunakan Metode Naive Bayes Classifier,” J. Sist. Komput. dan Inform., vol. 4, no. 4, p. 570, 2023, doi: 10.30865/json.v4i4.6168.
S. Rahayu, Y. MZ, J. E. Bororing, and R. Hadiyat, “Implementasi Metode K-Nearest Neighbor (K-NN) untuk Analisis Sentimen Kepuasan Pengguna Aplikasi Teknologi Finansial FLIP,” Edumatic J. Pendidik. Inform., vol. 6, no. 1, pp. 98–106, 2022, doi: 10.29408/edumatic.v6i1.5433.
A. Firdaus, “Aplikasi Algoritma K-Nearest Neighbor pada Analisis Sentimen Omicron Covid-19,” J. Ris. Stat., pp. 85–92, 2022, doi: 10.29313/jrs.v2i2.1148.
N. K. Widyasanti, I. K. G. Darma Putra, and N. K. Dwi Rusjayanthi, “Seleksi Fitur Bobot Kata dengan Metode TFIDF untuk Ringkasan Bahasa Indonesia,” J. Ilm. Merpati (Menara Penelit. Akad. Teknol. Informasi), vol. 6, no. 2, p. 119, 2018, doi: 10.24843/jim.2018.v06.i02.p06.
A. R. Isnain, J. Supriyanto, and M. P. Kharisma, “Implementation of K-Nearest Neighbor (K-NN) Algorithm For Public Sentiment Analysis of Online Learning,” IJCCS (Indonesian J. Comput. Cybern. Syst., vol. 15, no. 2, p. 121, 2021, doi: 10.22146/ijccs.65176.
Febryananda, Ade Rizky. "Mengenal Algoritma Klasifikasi K-Nearest Neighbor dalam Analisis Sentimen pada Data Ulasan suatu Produk.“ SRK. diakses tanggal 07 maret 2023. https://lab_adrk.ub.ac.id/id/mengenal-algoritma-klasifikasi-k-nearest-neighbor-dalam-analisis-sentimen-pada-data-ulasan-suatu-produk/
Fatma, Hayati, E. Haerani, F. Syafria, and E. Budianita, “Analisis Sentimen Tanggapan Masyarakat Terhadap Calon Presiden 2024 Ridwan Kamil Menggunakan Metode K-Nearest Neighbor” J. Sist. Komput. dan Inform., vol. 8, no. 2, p. 139, 2023, doi: 10.30865/json.v4i4.6168.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Analisis Sentimen Tanggapan Masyarakat Terhadap Kenaikan Biaya Haji Tahun 2023 Menggunakan Metode K- Nearest Neighbor (KNN)
ARTICLE HISTORY
Issue
Section
Copyright (c) 2023 Hafsyah, Elin Haerani, Novriyanto, Fadhilah Syafria

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).