Analisis Sentimen Tanggapan Masyarakat Terhadap Kenaikan Biaya Haji Tahun 2023 Menggunakan Metode K- Nearest Neighbor (KNN)


Authors

  • Hafsyah Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia
  • Elin Haerani Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia
  • Novriyanto Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia
  • Fadhilah Syafria Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia

DOI:

https://doi.org/10.30865/klik.v4i3.1471

Keywords:

Hajj Cost Increase in 2023; Hajj Expenses; Twitter; Sentiment Analysis; K-Nearest Neighbor

Abstract

The Indonesian government implemented a policy of increasing the cost of Hajj in 2023, but the policy has attracted many positive and negative comments among the public. Public comments are taken from the social media network Twitter, because it contains a lot of information so that it attracts the interest of most people. With the increase in Hajj costs in 2023, it is necessary to conduct sentiment analysis. This study uses  the K-Neearest Neighbor method  because it is easy to apply and the data used are divided into two classes, positive and negative. The results of research on the application of  the K-Nearest Neighbor method in  sentiment analysis of the increase in Hajj costs in 2023 using 3,000 data taken from Twitter comments. The tweet data  used, there were 1866 positive comments and 415 negative comments and the total net data of 2281, judging from the amount of positive data compared to negative  data, obtained an accuracy value of 81.17% in 70:30 data sharing, 79.87% in 80:20 data sharing, 77.73% in 90:10 data sharing. Meanwhile, the highest accuracy value was 81.17% with  82.48% precision, 97.67% recall, F1- Score 89.43%.  In this study, there were more positive responses, this proves that the increase in Hajj costs in 2023 using  the K-Nearest Neighbor (KNN)  method can be accepted by the community

Downloads

Download data is not yet available.

References

Nurhanisah, Yuli. "Biaya Haji Indonesia Tahun 2023." Indonesia Baik.Id Diakses Tanggal 24 Oktober 2023. https://indonesiabaik.id/infografis/biaya-haji-indonesia-tahun-2023

M. Riefky and W. Pramesti, “Sentiment Analysis of Southeast Asian Games (SEA Games) in Philippines 2019 Based on Opinion of Internet User of Social Media Twitter with K-Nearest Neighbor and Support Vector Machine,” J. Mat. Stat. dan Komputasi, vol. 17, no. 1, pp. 26–41, 2020, doi: 10.20956/jmsk.v17i1.9947.

F. Astuti, R. M. Candra, S. Agustian, and S. Ramadhani, “Klasifikasi Sentimen Masyarakat Terhadap Pemerintah Terkait Penerapan Kebijakan New Normal Menggunakan Metode K-Nearest Neighbor,” J. Nas. Komputasi dan Teknol. Inf., vol. 5, no. 3, pp. 531–538, 2022, doi: 10.32672/jnkti.v5i3.4455.

A. Y. Permana and M. Makmun, “Analisis Sentimen pada Teks Opini Penilaian Kinerja Dosen dengan Pendekatan Algoritma KNN,” J. Ilm. Komputasi, vol. 19, no. 1, pp. 39–50, 2020, doi: 10.32409/jikstik.19.1.154.

V. Alvian, A. Nilogiri, and H. Azizah, “Klasifikasi Siswa Berprestasi Menggunakan Metode K-Nearest Neighbor (KNN) Pada SMA Negeri 2 Situbondo,” J. Smart Teknol., vol. 3, no. 6, pp. 602–611, 2022, [Online]. Available: http://jurnal.unmuhjember.ac.id/index.php/JSTH.

S. S. Salim and J. Mayary, “Analisis Sentimen Pengguna Twitter Terhadap Dompet Elektronik Dengan Metode Lexicon Based Dan K – Nearest Neighbor,” J. Ilm. Inform. Komput., vol. 25, no. 1, pp. 1–17, 2020, doi: 10.35760/ik.2020.v25i1.2411.

Normah, B. Rifai, S. Vambudi, and R. Maulana, “Analisa Sentimen Perkembangan Vtuber Dengan Metode Support Vector Machine Berbasis SMOTE,” J. Tek. Komput. AMIK BSI, vol. 8, no. 2, pp. 174–180, 2022, doi: 10.31294/jtk.v4i2.

R. Putri Fitrianti, A. Kurniawati, D. Agusten, J. Sistem Informasi, and F. Ilmu Komputer dan Teknologi Informasi, “Implementasi Algoritma K-Nearest Neighbor Terhadap Analisis Sentimen Review Restoran Dengan Teks Bahasa Indonesia,” Semin. Nas. Apl. Teknol. Inf., pp. 1907–5022, 2019.

J. Homepage, S. R. Cholil, T. Handayani, R. Prathivi, and T. Ardianita, “IJCIT (Indonesian Journal on Computer and Information Technology) Implementasi Algoritma Klasifikasi K-Nearest Neighbor (KNN) Untuk Klasifikasi Seleksi Penerima Beasiswa,” IJCIT (Indonesian J. Comput. Inf. Technol., vol. 6, no. 2, pp. 118–127, 2021.

T. Wiratama Putra, A. Triayudi, and A. Andrianingsih, “Analisis Sentimen Pembelajaran Daring Menggunakan Metode Naïve Bayes, KNN, dan Decision Tree,” J. JTIK (Jurnal Teknol. Inf. dan Komunikasi), vol. 6, no. 1, pp. 20–26, 2022, doi: 10.35870/jtik.v6i1.368.

S. N. Arafah and F. Fathoni, “Sentiment Analysis Pada Masyarakat Terhadap LRT Kota Palembang Menggunakan Metode Improved K-Nearest Neighbor,” J. Media Inform. Budidarma, vol. 6, no. 3, p. 1554, 2022, doi: 10.30865/mib.v6i3.4434.

N. S. P. Juana, E. Haerani, F. Syafria, and E. Budianita, “Analisis Sentimen Tanggapan Masyarakat Terhadap Calon Presiden 2024 Ridwan Kamil Menggunakan Metode Naive Bayes Classifier,” J. Sist. Komput. dan Inform., vol. 4, no. 4, p. 570, 2023, doi: 10.30865/json.v4i4.6168.

S. Rahayu, Y. MZ, J. E. Bororing, and R. Hadiyat, “Implementasi Metode K-Nearest Neighbor (K-NN) untuk Analisis Sentimen Kepuasan Pengguna Aplikasi Teknologi Finansial FLIP,” Edumatic J. Pendidik. Inform., vol. 6, no. 1, pp. 98–106, 2022, doi: 10.29408/edumatic.v6i1.5433.

A. Firdaus, “Aplikasi Algoritma K-Nearest Neighbor pada Analisis Sentimen Omicron Covid-19,” J. Ris. Stat., pp. 85–92, 2022, doi: 10.29313/jrs.v2i2.1148.

N. K. Widyasanti, I. K. G. Darma Putra, and N. K. Dwi Rusjayanthi, “Seleksi Fitur Bobot Kata dengan Metode TFIDF untuk Ringkasan Bahasa Indonesia,” J. Ilm. Merpati (Menara Penelit. Akad. Teknol. Informasi), vol. 6, no. 2, p. 119, 2018, doi: 10.24843/jim.2018.v06.i02.p06.

A. R. Isnain, J. Supriyanto, and M. P. Kharisma, “Implementation of K-Nearest Neighbor (K-NN) Algorithm For Public Sentiment Analysis of Online Learning,” IJCCS (Indonesian J. Comput. Cybern. Syst., vol. 15, no. 2, p. 121, 2021, doi: 10.22146/ijccs.65176.

Febryananda, Ade Rizky. "Mengenal Algoritma Klasifikasi K-Nearest Neighbor dalam Analisis Sentimen pada Data Ulasan suatu Produk.“ SRK. diakses tanggal 07 maret 2023. https://lab_adrk.ub.ac.id/id/mengenal-algoritma-klasifikasi-k-nearest-neighbor-dalam-analisis-sentimen-pada-data-ulasan-suatu-produk/

Fatma, Hayati, E. Haerani, F. Syafria, and E. Budianita, “Analisis Sentimen Tanggapan Masyarakat Terhadap Calon Presiden 2024 Ridwan Kamil Menggunakan Metode K-Nearest Neighbor” J. Sist. Komput. dan Inform., vol. 8, no. 2, p. 139, 2023, doi: 10.30865/json.v4i4.6168.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Analisis Sentimen Tanggapan Masyarakat Terhadap Kenaikan Biaya Haji Tahun 2023 Menggunakan Metode K- Nearest Neighbor (KNN)

Dimensions Badge

ARTICLE HISTORY


Published: 2023-12-15
Abstract View: 361 times
PDF Download: 177 times

Most read articles by the same author(s)

1 2 > >>