Klasifikasi Data Penerimaan Zakat dengan Algoritma K-Nearest Neighbor


Authors

  • Alfin Hernandes Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia
  • Siska Kurnia Gusti Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia
  • Fadhilah Syafria Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia
  • Lestari Handayani Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia
  • Siti Ramadhani Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia

DOI:

https://doi.org/10.30865/klik.v4i3.1528

Keywords:

BAZNAS; Data Mining; Classification; K-Nearest Neighbour

Abstract

National Amil Zakat Agency (BAZNAS) is an institution responsible for managing zakat established by the government. BAZNAS has a presence in every district or city, and one of them is the BAZNAS in the city of Pekanbaru. BAZNAS in Pekanbaru city is responsible for distributing zakat to various empowerment programs, one of which is the Pekanbaru Cares program. Currently, BAZNAS in Pekanbaru city is facing issues related to the method of distributing zakat, where the process of determining the criteria for zakat recipients is still being done manually by the committee of BAZNAS in the city of Pekanbaru. This condition is considered inefficient and poses one of the challenges that need to be addressed. To overcome the mentioned constraints, steps are needed to improve the effectiveness and efficiency of data collection for potential zakat recipients. One of the solutions is to implement a classification system to facilitate the data collection process, using the K-Nearest Neighbor (KNN) method. This approach functions as a tool to classify data for potential beneficiaries. This research aims to classify data and measure the accuracy in assessing the eligibility of zakat recipients based on predetermined criteria, utilizing the K-Nearest Neighbor (K-NN) algorithm. A total of 602 data from BAZNAS in the city of Pekanbaru were used in this study, by dividing the training and test data, namely divided 90:10, 80:20, and 70:30 splits. The evaluation results from the confusion matrix of k=3, k=5, k=7, k=9, and k=11 show that the highest accuracy is achieved at k=5 with an 80:20 split, with an accuracy rate of 89.3%. Furthermore, a precision of 87.3% and a recall of 91.4% can also be attained through this approach.

Downloads

Download data is not yet available.

References

Islami Alvin Anzaz, “Jurnal Computer Science and Information Technology ( CoSciTech ) menggunakan algoritma lexrank,” vol. 4, no. 1, pp. 154–163, 2023.

Suryani Dyah and Fitriani Laitul, “Fungsi Zakat dalam Mengatasi Kemiskinan,” Al-Iqtishad J. Islam. Econ., vol. 10, no. 1, pp. 43–62, 2022, [Online]. Available: https://jurnal.stai-alazharmenganti.ac.id/index.php/AlIqtishod/article/view/307/176

Haerani Elin and Ramdaril Ramdaril, “Sistem Pendukung Keputusan Pendistribusian Zakat Pada Baznas Kota Pekanbaru Menggunakan Fuzzy Multiple Attribute Decission Making (FMADM) Dan Simple Additive Weighting (SAW),” J. Tek. Inform., vol. 3, no. 2, pp. 15–20, 2019, doi: 10.15408/jti.v10i2.6994.

Riyyan Muhamad and Firdau Hafiz, “Perbandingan Algoritma Naive Bayes Dan KNN Terhadap Data Penerimaan Beasiswa (Studi Kasus Lembaga Beasiswa Baznas Jabar),” J. Inform. dan Rekayasa Elektron., vol. 5, no. 1, pp. 1–10, 2022, doi: 10.36595/jire.v5i1.547.

Kurnia Fitra, Kurniawan Jhoni, Fahmi Ichsan, and Monalisa Siti, “Klasifikasi Keluarga Miskin Menggunakan Metode K-Nearest Neighbor Berbasis Euclidean Distance,” Semin. Nas. Teknol. Inf. Komun. dan Ind., pp. 230–239, 2019, [Online]. Available: https://ejournal.uin-suska.ac.id/index.php/SNTIKI/article/view/8089

Nikmatun Inna Alvi and Indra Waspada, “Implementasi Data Mining untuk Klasifikasi Masa Studi Mahasiswa Menggunakan Algoritma K-Nearest Neighbor,” J. SIMETRIS, vol. 10, no. 2, pp. 421–432, 2019.

Julianto Indri Tri, Kurniadi Dede, Nashrulloh Muhammad Rikza, and Mulyani Asri, “Comparison of Classification Algorithm and Feature Selection in Perbandingan Algoritma Klasifikasi Dan Feature Selection,” Jutif, vol. 3, no. 3, pp. 739–744, 2022.

Ula Mutammimul, Zulhusna Ria, Putra Fhonna Rizki, and Pratama Angga, “Penerapan Model Klasifikasi K-Nearest Neighbor Dalam Pencarian Kesesuaian Pekerjaan,” Metik J., vol. 6, no. 1, pp. 18–23, 2022, doi: 10.47002/metik.v6i1.343.

Raysyah Siti, Arinal Veri, and Mulyana Dadang Iskandar, “Klasifikasi Tingkat Kematangan Buah Kopi Berdasarkan Deteksi Warna Menggunakan Metode Knn Dan Pca,” JSiI (Jurnal Sist. Informasi), vol. 8, no. 2, pp. 88–95, 2021, doi: 10.30656/jsii.v8i2.3638.

Akhmad Muhammad Rhosyid and Siswa Taghfirul Azhima Yoga, “Implementasi K-Nearest Neighbor Dalam Memprediksi Keterlambatan Pembayaran Biaya Kuliah Di Perguruan Tinggi,” Progresif J. Ilm. Komput., vol. 18, no. 2, pp. 185–192, 2022, doi: 10.35889/progresif.v18i2.921.

Tangkelayuk Aldi, “The Klasifikasi Kualitas Air Menggunakan Metode KNN, Naïve Bayes, dan Decision Tree,” JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 9, no. 2, pp. 1109–1119, 2022, doi: 10.35957/jatisi.v9i2.2048.

Anggi Tasari, Dinata Tarigan Dewan, Nia Erika, Br Devina, and S Kana Saputra, “Perbandingan Algoritma Support Vector Machine dan KNN dalam Memprediksi Struktur Sekunder Protein,” vol. 9, no. 2, pp. 172–179, 2022.

Iswanto, Tulus, and Sihombing Poltak, “Comparison of Feature Selection To Performance Improvement of K-Nearest Neighbor Algorithm in Data Classification,” J. Tek. Inform., vol. 3, no. 6, pp. 1709–1716, 2022, doi: 10.20884/1.jutif.2022.3.6.471.

M. Syukri Mustafa and I. Wayan Simpen, “Implementation of the K-Nearest Neighbor (KNN) Algorithm to Predict Patients Affected by Diabetes at the Manyampa Health Center, Bulukumba Regency,” Pros. Semin. Ilm. Sist. Indormasi dan Teknol. Inf., vol. VIII, no. 1, pp. 1–10, 2019.

Hasanah Riyan Latifahul, Hasan Muhamad, Pangesti Witriana Endah, Wati Fanny Fatma, and Gata Windu, “Klasifikasi Penerima Dana Bantuan Desa Menggunakan Metode Knn (K-Nearest Neighbor),” J. Techno Nusa Mandiri, vol. 16, no. 1, pp. 1–6, 2019, doi: 10.33480/techno.v16i1.25.

Tangguh Admojo Fadhila, “Indonesian Journal of Data and Science Klasifikasi Aroma Alkohol Menggunakan Metode KNN,” Indones. J. Data Sci., vol. 1, no. 2, pp. 34–38, 2020.

Nurjanah Siti, Siregar Amril Mutoi, and Kusumaningrum Dwi Sulistya, “Penerapan Algoritma K – Nearest Neighbor (KNN) Untuk Klasifikasi Pencemaran Udara Di Kota Jakarta,” Sci. Student J. Information, Technol. Sci., vol. 1, no. 2, pp. 71–76, 2020, [Online]. Available: http://journal.ubpkarawang.ac.id/mahasiswa/index.php/ssj/article/view/14

Aisha Alfani W.P.R., Rozi Fahrur, and Sukmana Farid, “Prediksi Penjualan Produk Unilever Menggunakan Metode K-Nearest Neighbor,” JIPI (Jurnal Ilm. Penelit. dan Pembelajaran Inform., vol. 6, no. 1, pp. 155–160, 2021, doi: 10.29100/jipi.v6i1.1910.

Handoko Dedi, Tambunan Heru Satria, and Tata Hardinata Jaya, “Analisis Penjualan Produk Paket Kuota Internet Dengan Metode K-Nearest Neighbor,” Jurasik (Jurnal Ris. Sist. Inf. dan Tek. Inform., vol. 6, no. 1, pp. 111–119, 2021, doi: 10.30645/jurasik.v6i1.275.

Ali Jamaluddin and Faroji Ridwan, “Pengaruh Profitabilitas terhadap Nilai Perusahaan,” J. Neraca Perad., vol. 1, no. 2, pp. 128–135, 2021, doi: 10.55182/jnp.v1i2.36.

Basuki Beni, Alwis Nazir, Gusti Siska Kurnia, Handayani Lestari, and Iskandar Iwan, “Klasifikasi Tingkat Keberhasilan Produksi Ayam Broiler di Riau Menggunakan Algoritma K-Nearest Neighbor,” J. Sist. Komput. dan Inform., vol. 4, no. 3, pp. 510–516, 2023, doi: 10.30865/json.v4i3.5665.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Klasifikasi Data Penerimaan Zakat dengan Algoritma K-Nearest Neighbor

Dimensions Badge

ARTICLE HISTORY


Published: 2023-12-22
Abstract View: 444 times
PDF Download: 382 times

Most read articles by the same author(s)