Analisis Sentimen Terhadap Pelayanan TransJakarta Berdasarkan Tweets Menggunakan Metode Naïve Bayes Classifier


Authors

  • Hilmy Zhafran Muflih Universitas Muhammadiyah Prof. Dr. Hamka, Jakarta, Indonesia
  • Firman Noor Hasan Universitas Muhammadiyah Prof. Dr. Hamka, Jakarta, Indonesia

DOI:

https://doi.org/10.30865/klik.v4i6.1927

Keywords:

Sentiment Analysis; Review; Service; TransJakarta; Naïve Bayes

Abstract

The high use of private transportation in Indonesia, especially in the Jakarta area, causes several impacts, one of which is traffic jams. This congestion condition can be reduced by public transportation. It is hoped that public transportation can now reduce the level of congestion in Jakarta. One of the public transportation in Jakarta is TransJakarta. TransJakarta is a form of transportation that can carry a relatively large number of passengers and TransJakarta offers various facilities to users, such as the availability of priority seating, stops that are quite comfortable, comfortable conditions on the bus plus low prices so that it gets various responses from users who led researchers to conduct research on the views of TransJakarta users regarding TransJakarta services, whether TransJakarta users' responses were positive or negative. The purpose of this research is to understand whether users are satisfied or not with the services provided by TransJakarta. The method used in the research is the Naïve Bayes Classifier algorithm which is used to carry out the sentiment analysis process regarding TransJakarta services with the help of the RapidMiner application. The data collected by researchers was 773 tweet data obtained via social media X to be used as a dataset. The results of sentiment analysis from the Naïve Bayes Classifier algorithm obtained 80.6% or 623 negative sentiments and 19.4% or 150 positive sentiments from 773 datasets. The results of the confusion matrix evaluation obtained an accuracy value of 73.96%.

Downloads

Download data is not yet available.

References

F. N. Hasan and M. Dwijayanti, “Analisis Sentimen Ulasan Pelanggan Terhadap Layanan Grab Indonesia Menggunakan Multinominal Naïve Bayes Classifier,” J. Linguist. Komputasional, vol. 4, no. 2, pp. 52–58, 2021, doi: https://doi.org/10.26418/jlk.v4i2.61.

K. Nisa and S. R. Nio, “Perbedaan Loyalitas Pelanggan Pengguna Jasa Ojek Online (Go-Jek) Ditinjau dari Jenis Kelamin,” J. Ris. Psikol., vol. 4, pp. 1–11, 2019, doi: http://dx.doi.org/10.24036/jrp.v2019i4.7580.

S. A. Azwar and Y. Abdurrohman, “Pengaruh Pandemik Covid-19 Terhadap Gerakan Transportasi Di Jabodetabek (the Influence of Pandemic Covid-19 on Transportation Movement in Jabodetabek),” J. Logistik, vol. 14, no. 01, pp. 27–36, 2021, doi: https://doi.org/10.21009/logistik.v14i1.20498.

E. Deliyani and B. Prambudi, “Pengaruh Kualitas Pelayanan Terhadap Kepuasan Pelanggan Pada Penumpang Mrt Jakarta,” J. Ekobis Ekon. Bisnis Manaj., vol. 9, no. 2, pp. 124–131, 2020, doi: 10.37932/j.e.v9i2.62.

M. M. Veronika and D. Pontan, “Halte Transjakarta Identification of Halte Transjakarta User Satisfaction Factors,” Pros. Semin. Intelekt. Muda, no. April, pp. 339–342, 2019, doi: https://doi.org/10.25105/psia.v1i1.5977.

M. H. Fakhriza and R. D. Dana, “Optimisasi Pembayaran Tiket Bus di JABODETABEK Melalui Pengelompokan Transaksi Digital Menggunakan Algoritma K-Means,” vol. 7, no. 1, pp. 313–319, 2023, doi: https://doi.org/10.36040/jati.v7i1.6339.

A. F. Damayanti, K. Komariah, and F. Z. Mulia, “Analysis Perceived Ease of Use, Electronic Service Quality on Purchasing Decisions of Busway Electronic Money Card On Vending Machine,” Manag. Stud. Entrep. J., vol. 3, no. 4, pp. 1946–1952, 2022, doi: https://doi.org/10.37385/msej.v3i4.660.

Alfandi Safira and F. N. Hasan, “Analisis Sentimen Masyarakat Terhadap Paylater Menggunakan Metode Naive Bayes Classifier,” Zo. J. Sist. Inf., vol. 5, no. 1, pp. 59–70, 2023, doi: 10.31849/zn.v5i1.12856.

M. I. Fikri, T. S. Sabrila, and Y. Azhar, “Perbandingan Metode Naïve Bayes dan Support Vector Machine pada Analisis Sentimen Twitter,” Smatika J., vol. 10, no. 02, pp. 71–76, 2020, doi: 10.32664/smatika.v10i02.455.

O. P. Zusrotun, A. C. Murti, and R. Fiati, “Sentimen Analisis Belajar Online di Twitter Menggunakan Naïve Bayes Jurnal Nasional Pendidikan Teknik Informatika?: JANAPATI | 311,” vol. 11, pp. 310–320, 2022, doi: https://doi.org/10.23887/janapati.v11i3.49160.

I. B. G. Sarasvananda, D. Selivan, M. L. Radhitya, and I. N. T. A. Putra, “Analisis Sentimen Pada Pembelajaran Daring Di Indonesia Melalui Twitter Menggunakan Naïve Bayes Classifier,” SINTECH (Science Inf. Technol. J., vol. 5, no. 2, pp. 227–233, 2022, doi: 10.31598/sintechjournal.v5i2.1241.

I. R. Afandi, F. N. Hasan, A. A. Rizki, N. Pratiwi, and Z. Halim, “Analisis Sentimen Opini Masyarakat Terkait Pelayanan Jasa Ekspedisi Anteraja Dengan Metode Naive Bayes,” J. Linguist. Komputasional, vol. 5, no. 2, pp. 63–70, 2022, doi: https://doi.org/10.26418/jlk.v5i2.107.

M. Syarifuddinn, “Analisis Sentimen Opini Publik Terhadap Efek Psbb Pada Twitter Dengan Algoritma Decision Tree,Knn, Dan Naïve Bayes,” INTI Nusa Mandiri, vol. 15, no. 1, pp. 87–94, 2020, doi: 10.33480/inti.v15i1.1433.

F. V. Sari and A. Wibowo, “Analisis Sentimen Pelanggan Toko Online Jd.Id Menggunakan Metode Naïve Bayes Classifier Berbasis Konversi Ikon Emosi,” J. SIMETRIS, vol. 10, no. 2, pp. 681–686, 2019, doi: https://doi.org/10.24176/simet.v10i2.3487.

D. S. Putri, A. Sentimen, U. Aplikasi, and T. Ridwan, “Analisis Sentimen Ulasan Aplikasi Pospay dengan Algoritma Support Vector Machine,” no. 2018, 2023, doi: https://doi.org/10.33884/jif.v11i01.6611.

D. Ariestiany and T. Santoso, “Analisis Pengelolaan Stok Kue Menggunakan Algoritma Apriori Pada Toko Kue Sponji,” Zo. J. Sist. Inf., vol. 4, no. 2, pp. 167–183, 2022, doi: 10.31849/zn.v4i2.11128.

M. A. Amrustian, W. Widayat, and A. M. Wirawan, “Analisis Sentimen Evaluasi Terhadap Pengajaran Dosen di Perguruan Tinggi Menggunakan Metode LSTM,” J. Media Inform. Budidarma, vol. 6, no. 1, p. 535, 2022, doi: 10.30865/mib.v6i1.3527.

Y. yuli Astari, A. Afiyati, and S. W. Rozaqi, “Analisis Sentimen Multi-Class Pada Sosial Media Menggunakan Metode Long Short-Term Memory (LSTM),” J. Linguist. Komputasional, vol. 4, no. 1, pp. 8–12, 2021, doi: https://doi.org/10.26418/jlk.v4i1.43.

I. Fahrur Rozi, A. Taufika Firdausi, and K. Islamiyah, “Analisis Sentimen Pada Twitter Mengenai Pasca Bencana Menggunakan Metode Naïve Bayes Dengan Fitur N-Gram,” J. Inform. Polinema, vol. 6, no. 2, pp. 33–39, 2020, doi: 10.33795/jip.v6i2.316.

S. H. Ramadhani and M. I. Wahyudin, “Analisis Sentimen Terhadap Vaksinasi Astra Zeneca pada Twitter Menggunakan Metode Naïve Bayes dan K-NN,” J. JTIK (Jurnal Teknol. Inf. dan Komunikasi), vol. 6, no. 4, pp. 526–534, 2022, doi: 10.35870/jtik.v6i4.530.

R. Slamet, W. Gata, A. Novtariany, K. Hilyati, and F. A. Jariyah, “Analisis Sentimen Twitter Terhadap Penggunaan Artis Korea Selatan Sebagai Brand Ambassador Produk Kecantikan Lokal,” INTECOMS J. Inf. Technol. Comput. Sci., vol. 5, no. 1, pp. 145–153, 2022, doi: 10.31539/intecoms.v5i1.3933.

M. Syarifuddinn, “Analisis Sentimen Opini Publik Mengenai Covid-19 Pada Twitter Menggunakan Metode Naïve Bayes Dan Knn,” INTI Nusa Mandiri, vol. 15, no. 1, pp. 23–28, 2020, doi: 10.33480/inti.v15i1.1347.

I. P. Rahayu, A. Fauzi, and J. Indra, “Analisis Sentimen Terhadap Program Kampus Merdeka Menggunakan Naive Bayes Dan Support Vector Machine,” J. Sist. Komput. dan Inform. Hal 296?, vol. 301, no. 2, pp. 25–38, 2022, doi: http://dx.doi.org/10.30865/json.v4i2.5381.

J. Florensius Sianipar, Y. R. Ramadhan, and I. Jaelani, “Analisis Sentimen Pembangunan Kereta Cepat Jakarta-Bandung di Media Sosial Twitter Menggunakan Metode Naive Bayes,” Media Online), vol. 4, no. 1, pp. 360–367, 2023, doi: 10.30865/klik.v4i1.1033.

D. Oktavia, Y. R. Ramadahan, and M. Minarto, “Analisis Sentimen Terhadap Penerapan Sistem E-Tilang Pada Media Sosial Twitter Menggunakan Algoritma Support Vector Machine (SVM),” KLIK Kaji. Ilm. Inform. dan Komput., vol. 4, no. 1, pp. 407–417, 2023, doi: 10.30865/klik.v4i1.1040.

E. W. Sholeha, S. Yunita, R. Hammad, V. C. Hardita, and K. Kaharuddin, “Analisis Sentimen Pada Agen Perjalanan Online Menggunakan Naïve Bayes dan K-Nearest Neighbor,” JTIM J. Teknol. Inf. dan Multimed., vol. 3, no. 4, pp. 203–208, 2022, doi: 10.35746/jtim.v3i4.178.

M. Hudha, E. Supriyati, and T. Listyorini, “Analisis Sentimen Pengguna Youtube Terhadap Tayangan #Matanajwamenantiterawan Dengan Metode Naïve Bayes Classifier,” JIKO (Jurnal Inform. dan Komputer), vol. 5, no. 1, pp. 1–6, 2022, doi: 10.33387/jiko.v5i1.3376.

F. Noor Hasan, “Analisis Sentimen Pengguna Aplikasi CapCut Pada Ulasan di Play Store Menggunakan Metode Naïve Bayes,” Media Online), vol. 4, no. 4, pp. 2272–2280, 2024, doi: 10.30865/klik.v4i4.1555.

A. Noviriandini, H. Hermanto, and D. Ayu Ambarsari, “Analisis Tingkat Kepuasan Pengguna Aplikasi JMO (Jamsostek Mobile) Menggunakan Algoritma Naive Bayes Classifier,” Reputasi J. Rekayasa Perangkat Lunak, vol. 4, no. 1, pp. 33–37, 2023, doi: 10.31294/reputasi.v4i1.1986.

A. Halim and Andri Safuwan, “Analisis Sentimen Opini Warganet Twitter Terhadap Tes Screening Genose Pendeteksi Virus Covid-19 Menggunakan Metode Naïve Bayes Berbasis Particle Swarm Optimization,” J. Inform. Teknol. dan Sains, vol. 5, no. 1, pp. 170–178, 2023, doi: 10.51401/jinteks.v5i1.2229.

M. F. El Firdaus, N. Nurfaizah, and S. Sarmini, “Analisis Sentimen Tokopedia Pada Ulasan di Google Playstore Menggunakan Algoritma Naïve Bayes Classifier dan K-Nearest Neighbor,” JURIKOM (Jurnal Ris. Komputer), vol. 9, no. 5, p. 1329, 2022, doi: 10.30865/jurikom.v9i5.4774.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Analisis Sentimen Terhadap Pelayanan TransJakarta Berdasarkan Tweets Menggunakan Metode Naïve Bayes Classifier

Dimensions Badge

ARTICLE HISTORY


Published: 2024-06-30
Abstract View: 158 times
PDF Download: 128 times

Issue

Section

Articles