Klasifikasi Sentimen Terhadap Aplikasi Identitas Kependudukan Digital Menggunakan Algoritma Naïve Bayes dan SVM
DOI:
https://doi.org/10.30865/klik.v4i3.1517Keywords:
Naïve Bayes; SVM; Identitas Kependudukan Digital; Sentiment Clasification; ApplicationAbstract
The Ministry of Home Affairs announced the implementation of an application to keep up with technological and information developments while utilizing digitalization in an effort to increase the efficiency of public services to the community in terms of population data under the name Digital Population Identity (IKD). The Digital Population Identity Application will represent identity data information in digital form. There have been 5 million users who have downloaded the application and around 33 thousand people have provided reviews regarding their satisfaction after using the application. However, implementing the Digital Population Identity application still has pros and cons. There are various user sentiments given based on reviews regarding their satisfaction after using the application. From this problem. The researcher tried to conduct sentiment classification research using the Naïve Bayes algorithm and Support Vector Machine using RapidMiner Studio to determine the public's response to their satisfaction with the Digital Population Identity application by pulling review data on the Digital Population Identity application. Sentiment in review data will be divided into positive sentiment and negative sentiment. The stages carried out in the research process are data collection, data labeling, data cleaning, word weighting with TF-IDF, SMOTE Upsampling, and Cross Validation to accommodate the two classification algorithms, apply model, and performance. As a result of the analysis process that has been carried out, the Support Vector Machine algorithm has quite good performance with an accuracy value of 80.46%, precision of 0.73, and recall of 0.96%. Meanwhile, Naïve Bayes has an accuracy value of 80.22%, precision of 0.73 and recall of 0.94. Both algorithms can carry out the classification process well in the analysis process in the Digital Population Identity application
Downloads
References
E. P. Primawanti and H. Ali, “Pengaruh Teknologi Informasi, Sistem Informasi Berbasis Web Dan Knowledge Management Terhadap Kinerja Karyawan (Literature Review Executive Support Sistem (ESS) For Business),” Jurnal Ekonomi Manajemen Sistem Informasi, vol. 3, no. 3, pp. 267–285, 2022, doi: 10.31933/jemsi.v3i3.
U. Yudatama et al., Memahami Teknologi Informasi. Kaizen Media Publishing, 2023. Accessed: Dec. 02, 2023. [Online]. Available: https://books.google.co.id/books?hl=en&lr=&id=P1HcEAAAQBAJ&oi=fnd&pg=PA67&dq=info:6NeX_NUA6lAJ:scholar.google.com&ots=IbIdD19YUk&sig=EGXKHwoIb3aJ34SOc-ylMoXg7V8&redir_esc=y#v=onepage&q&f=false
A. Widiyarta and I. Humaidah, “Implementasi Aktivasi Identitas Kependudukan Digital (Ikd) Dalam Mendorong Digitalisasi Di Kelurahan Jepara Kota Surabaya,” Jurnal Ilmiah Wahana Pendidikan, vol. 9, no. 18, pp. 43–51, 2023, doi: 10.5281/zenodo.8310255.
Y. W. S. Putra et al., Pengantar Aplikasi Mobile. Penerbit Widina, 2023. Accessed: Dec. 02, 2023. [Online]. Available: https://books.google.co.id/books?hl=en&lr=&id=2tLcEAAAQBAJ&oi=fnd&pg=PA35&dq=info:oBah_CrQrcMJ:scholar.google.com&ots=6KrSlckjQC&sig=FdtXsu57pAYoU4-hUDqedKEILWM&redir_esc=y#v=onepage&q&f=false
G. Fachrul Farlian and A. History, “The Method User Experience Questionnaire Analysis of Identitas Kependudukan Digital Application,” PARADIGMA, vol. 25, no. 2, pp. 128–134, 2023, doi: 10.31294/paradigma.v25i2.
M. I. Amal, E. S. Rahmasita, E. Suryaputra, and N. A. Rakhmawati, “Analisis Klasifikasi Sentimen Terhadap Isu Kebocoran Data Kartu Identitas Ponsel di Twitter,” Jurnal Teknik Informatika dan Sistem Informasi, vol. 8, no. 3, pp. 645–660, Dec. 2022, doi: 10.28932/jutisi.v8i3.5483.
F. Sidik, I. Suhada, A. H. Anwar, and F. N. Hasan, “Analisis Sentimen Terhadap Pembelajaran Daring Dengan Algoritma Naive Bayes Classifier,” Jurnal Linguistik Komputasional (JLK), vol. 5, no. 1, p. 34, Apr. 2022, doi: 10.26418/jlk.v5i1.79.
T. A. Sari, E. Sinduningrum, and F. Noor Hasan, “Analisis Sentimen Ulasan Pelanggan Pada Aplikasi Fore Coffee Menggunakan Metode Naïve Bayes,” KLIK: Kajian Ilmiah Informatika dan Komputer, vol. 3, no. 6, pp. 773–779, 2023, doi: 10.30865/klik.v3i6.884.
M. Dwijayanti, F. Noor Hasan, and R. Zein Adam, “Analisis Sentimen Pada Ulasan Pelanggan Menggunakan Metode Naïve Bayes Classifier (Studi Kasus: Grab Indonesia),” Prosiding Seminar Nasional Teknoka, vol. 6, pp. 93–99, Jan. 2022, doi: 10.22236/teknoka.v6i1.441.
N. Salmi and Z. Rustam, “Naïve Bayes Classifier Models for Predicting the Colon Cancer,” IOP Conf Ser Mater Sci Eng, vol. 546, no. 5, Jun. 2019, doi: 10.1088/1757-899X/546/5/052068.
I. Parlina et al., “Naive Bayes Algorithm Analysis to Determine the Percentage Level of visitors the Most Dominant Zoo Visit by Age Category,” J Phys Conf Ser, vol. 1255, no. 1, Aug. 2019, doi: 10.1088/1742-6596/1255/1/012031.
R. Wahyudi and G. Kusumawardhana, “Analisis Sentimen Pada Review Aplikasi Grab di Google Play Store Menggunakan Support Vector Machine,” JURNAL INFORMATIKA, vol. 8, no. 2, pp. 200–207, 2021, [Online]. Available: http://ejournal.bsi.ac.id/ejurnal/index.php/ji
I. P. Rahayu, A. Fauzi, and J. Indra, “Analisis Sentimen Terhadap Program Kampus Merdeka Menggunakan Naive Bayes Dan Support Vector Machine,” Jurnal Sistem Komputer dan Informatika (JSON), vol. 4, no. 2, pp. 296–301, Dec. 2022, doi: 10.30865/json.v4i2.5381.
Y. A. Singgalen, “Analisis Sentimen Wisatawan Melalui Data Ulasan Candi Borobudur di Tripadvisor Menggunakan Algoritma Naïve Bayes Classifier,” Building of Informatics, Technology and Science (BITS), vol. 4, no. 3, pp. 1343–1352, Dec. 2022, doi: 10.47065/bits.v4i3.2486.
D. Duei Putri, G. F. Nama, and W. E. Sulistiono, “Analisis Sentimen Kinerja Dewan Perwakilan Rakyat (DPR) Pada Twitter Menggunakan Metode Naive Bayes Classifier,” Jurnal Informatika dan Teknik Elektro Terapan, vol. 10, no. 1, pp. 34–40, Jan. 2022, doi: 10.23960/jitet.v10i1.2262.
Herwinsyah and A. Witanti, “Analisis Sentimen Masyarakt Terhadap Vaksinasi Covid-19 Pada Media Sosial Twitter Menggunakan Algoritma Support Vector Machine (SVM),” Jurnal Sistem Informasi dan Informatika (Simika) P-ISSN, vol. 5, no. 1, pp. 59–57, 2022, doi: https://doi.org/10.47080/simika.v5i1.1411.
F. Setya Ananto and F. N. Hasan, “Implementasi Algoritma Naïve Bayes Terhadap Analisis Sentimen Ulasan Aplikasi MyPertamina pada Google Play Store,” Jurnal ICT?: Information Communication & Technology, vol. 23, no. 1, pp. 75–80, 2023, [Online]. Available: https://ejournal.ikmi.ac.id/index.php/jict-ikmi
F. Septianingrum, J. H. Jaman, and U. Enri, “Analisis Sentimen Pada Isu Vaksin Covid-19 di Indonesia dengan Metode Naive Bayes Classifier,” JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 5, no. 4, pp. 1431–1437, Oct. 2021, doi: 10.30865/mib.v5i4.3260.
A. Wibowo, F. Noor Hasan, L. Akbar Ramadhan, R. Nurhayati, and A. Wibowo, “Analisis Sentimen Opini Masyarakat Terhadap Keefektifan Pembelajaran Daring Selama Pandemi COVID-19 Menggunakan Naïve Bayes Classifier,” Jurnal Asiimetrik: Jurnal Ilmiah Rekayasa Dan Inovasi , vol. 4, no. 2, pp. 239–248, 2022, doi: https://doi.org/10.35814/asiimetrik.v4i1.3577.
Mujahidin. Syamsul, B. Prasetio, and M. Chandra Cahyo Utomo, “Implementasi Analisis Sentimen Masyarakat Mengenai Kenaikan Harga BBM Pada Komentar Youtube Dengan Metode Gaussian naïve bayes,” Jurnal Vocational Teknik Elektronika dan Informatika, vol. 10, no. 3, pp. 17–24, 2022, doi: https://doi.org/10.24036/voteteknika.v10i3.118299.
R. W. Pratiwi, S. F. H, Dairoh, D. I. Af’idah, Q. R. A, and A. G. F, “Analisis Sentimen Pada Review Skincare Female Daily Menggunakan Metode Support Vector Machine (SVM),” Journal of Informatics Information System Software Engineering and Applications (INISTA), vol. 4, no. 1, pp. 40–46, 2021, doi: https://doi.org/10.20895/inista.v4i1.387.
E. Suryati, Styawati, and A. A. Aldino, “Analisis Sentimen Transportasi Online Menggunakan Ekstraksi Fitur Model Word2vec Text Embedding Dan Algoritma Support Vector Machine (SVM),” JURNAL TEKNOLOGI DAN SISTEM INFORMASI, vol. 4, no. 1, pp. 96–106, 2023, doi: 10.33365/jtsi.v4i1.2445.
I. S. K. Idris, Y. A. Mustofa, and I. A. Salihi, “Analisis Sentimen Terhadap Penggunaan Aplikasi Shopee Mengunakan Algoritma Support Vector Machine (SVM),” Jambura Journal of Electrical and Electronics Engineering, vol. 5, no. 1, pp. 32–35, Jan. 2023, doi: 10.37905/jjeee.v5i1.16830.
R. Shafa Azizah, M. Kamayani, and K. Kunci, “Analisis Sentimen Terhadap Kesehatan Mental Selama Pandemi Covid-19 Berdasarkan Algoritma Naïve Bayes dan Deep Learning,” Jurnal ICT?: Information Communication & Technology, vol. 23, no. 1, pp. 38–43, 2023, [Online]. Available: https://ejournal.ikmi.ac.id/index.php/jict-ikmi
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Klasifikasi Sentimen Terhadap Aplikasi Identitas Kependudukan Digital Menggunakan Algoritma Naïve Bayes dan SVM
ARTICLE HISTORY
Issue
Section
Copyright (c) 2023 Faisal Parsakh Nursyamsyi, Firman Noor Hasan

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).