Prediksi Jumlah Kedatangan Pasien Puskesmas Menggunakan Metode Backpropagation Artificial Neural Network
DOI:
https://doi.org/10.30865/klik.v4i6.1922Keywords:
Predict; Patient; Public health center; Backpropagation; Data MiningAbstract
Patient visit prediction is a crucial aspect of community health center management to optimize the allocation of available resources. However, the erratic pattern of patient visits often complicates the planning and decision-making processes. This research aims to develop a patient visit prediction model for Grabag 1 Community Health Center using the backpropagation artificial neural network method. Backpropagation is a learning algorithm technique used in artificial neural network models with multiple hidden layers. In this research, there are several stages of data processing, including selecting the data attributes used, handling missing values, data normalization, sliding window, and dividing the data into training and testing sets. This prediction can be utilized by the health center to efficiently plan resource requirements, such as scheduling medical staff, managing medication supplies, and maintaining supporting facilities. The data used in this research is a time series spanning from 2019 to 2023. After conducting various experiments, the best results were obtained using a combination of 500 epochs, 30 input neurons, 1 hidden layer, 7 hidden neurons, and 1 output neuron. This artificial neural network architecture configuration achieved a Mean Squared Error (MSE) of 0.00229501 for the training data and 0.00782101 for the testing data.
Downloads
References
A. E. Syaputra and Y. S. Eirlangga, “Prediksi Tingkat Kunjungan Pasien dengan Menggunakan Metode Monte Carlo,” J. Inf. dan Teknol., vol. 4, no. 2, pp. 97–102, 2022, doi: 10.37034/jidt.v4i2.202.
W. M. Baihaqi, M. Dianingrum, and K. aswin N. Ramadhan, “Regresi linier sederhana untuk memprediksi kunjungan pasien di rumah sakit berdasarkan jenis layanan dan umur pasien,” J. Simetris, vol. 10, no. 2, pp. 671–680, 2019.
A. Wibowo, D. Iskandar, and W. A. S. Wibowo, “Data Mining Dalam Prediksi Jumlah Pasien Dengan Regresi Linear Dan Exponential Smoothing,” J. Sist. Inf. dan Sains Teknol., vol. 5, no. 1, pp. 1–8, 2023.
D. P. Utomo and M. Mesran, “Analisis Komparasi Metode Klasifikasi Data Mining dan Reduksi Atribut Pada Data Set Penyakit Jantung,” J. Media Inform. Budidarma, vol. 4, no. 2, p. 437, 2020, doi: 10.30865/mib.v4i2.2080.
V. A. Lestari, A. Y. Ananta, and P. Basudewa, “Sistem Informasi Prediksi Persediaan Obat Di Apotek Naylun Farma Menggunakan Holt-Winters,” J. Inform. Polinema, vol. 9, no. 2, pp. 229–236, 2023, doi: 10.33795/jip.v9i2.1289.
H. Pratiwi, Kecerdasan Buatan: Disertai Praktik Baik Pemanfaatannya. Samarinda: Asadel Liamsindo Teknologi, 2024.
N. E. De Jesusi and fauzan anief Rozi, “Penerapan Data Mning Untuk Memprediksi Jumlah Data Pasien Di Puskesmas Haekesak Menggunakan Metode Arima,” Bussiness Law binus, vol. 7, no. 2, pp. 33–48, 2020.
W. Santoso, Maimunah, and P. Sukmasetya, “JURNAL MEDIA INFORMATIKA BUDIDARMA Prediksi Volume Sampah di TPSA Banyuurip Menggunakan Metode Backpropagation Neural Network,” J. Media Inform. Budidarma, vol. 7, pp. 464–472, 2023, doi: 10.30865/mib.v7i1.5499.
H. Putra and N. Ulfa Walmi, “Penerapan Prediksi Produksi Padi Menggunakan Artificial Neural Network Algoritma Backpropagation,” J. Nas. Teknol. dan Sist. Inf., vol. 6, no. 2, pp. 100–107, 2020, doi: 10.25077/teknosi.v6i2.2020.100-107.
C. Maisyarah, E. Haryatmi, R. Y. Fajriatifah, and Y. H. Puspita, “Prediksi Penyakit Diabetes menggunakan Algoritma Artificial Neural Network,” J. Data Sci. Inform., vol. 2, no. 1, pp. 46–52, 2022, [Online]. Available: http://publikasi.bigdatascience.id/index.php/jdsi
W. S. Lestari and A. Halim, “Prediksi Kesuksesan Startup Menggunakan Deep Neural Network,” J. SIFO Mikroskil, vol. 23, no. 2, pp. 99–110, 2022, doi: 10.55601/jsm.v23i2.885.
S. Y. Prasetyo, “Prediksi Gagal Jantung Menggunakan Artificial Neural Network,” J. SAINTEKOM, vol. 13, no. 1, pp. 79–88, 2023, doi: 10.33020/saintekom.v13i1.379.
Martono and B. Hendrardi, “Implementasi Algoritme Average-Based Length Dalam Fuzzy Time Series Untuk Memprediksi Pasien Rumah Sakit,” Politeknosains, vol. XVIII, no. 2, p. 63, 2019.
C. Cahyaningtyas, Y. Nataliani, and I. R. Widiasari, “Analisis Sentimen Pada Rating Aplikasi Shopee Menggunakan Metode Decision Tree Berbasis SMOTE,” Aiti, vol. 18, no. 2, pp. 173–184, 2021, doi: 10.24246/aiti.v18i2.173-184.
S. Wagyu and C. Idahm, “K-Nearest Neighbor (K-Nn) Untuk Penanganan Missing Value Pada Data Umkm,” J. Rekayasa Sist. Inf. dan Teknol., vol. 1, no. 2, pp. 54–63, 2023, doi: 10.59407/jrsit.v1i2.77.
M. R. A. Prasetya, A. M. Priyatno, and Nurhaeni, “Penanganan Imputasi Missing Values pada Data Time Series dengan Menggunakan Metode Data Mining,” J. Inf. dan Teknol., vol. 5, no. 2, pp. 52–62, 2023, doi: 10.37034/jidt.v5i2.324.
I. L. F. Amien, W. Astuti, and K. M. Lhaksamana, “Perbandingan Metode Naïve Bayes dan KNN (K-Nearest Neighbor) dalam Klasifikasi Penyakit Diabetes,” e-Proceeding Eng., vol. 10, no. 2, pp. 1911–1920, 2023.
A. Harmain, Paiman, K. Henri, Kusnuri, and D. Maulina, “Normalisasi Data Untuk Efisiensi K-Means Pada Pengelompokkan Wilayah Berpotensi Kebakaran Hutan dan Lahan Berdasarkan Sebaran Titik Panas,” Teknimedia, vol. 2, no. 2, pp. 83–89, 2021.
R. E. Wahyuni, “Optimasi Prediksi Inflasi Dengan Neural Network Pada Tahap Windowing Adakah Pengaruh Perbedaan Window Size,” Technol. J. Ilm., vol. 12, no. 3, p. 176, 2021, doi: 10.31602/tji.v12i3.5181.
C. C. Aggarwal, Neural Networks and Deep Learning. New York: Springer, 2018.
A. Santoso and S. Hansun, “Prediksi IHSG dengan Backpropagation Neural Network,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 3, no. 2, pp. 313–318, 2019, doi: 10.29207/resti.v3i2.887.
Saraswati Euis, Umaidah Yuyun, and Voutama Apriande, “Penerapan Algoritma Artificial Neural Network untuk Klasifikasi Opini Publik Terhadap Covid-19,” Gener. J., vol. 5, no. 2, pp. 109–118, 2021, doi: 10.29407/gj.v5i2.16125.
Hernadewita, Y. K. Hadi, M. J. Syaputra, and D. Setiawan, “Peramalan Penjualan Obat Generik Melalui Time Series Forecasting Model Pada Perusahaan Farmasi di Tangerang: Studi Kasus,” J. Ind. Eng. Manag. Res. ( Jiemar), vol. 1, no. 2, pp. 35–36, 2020, [Online]. Available: https://jiemar.org/index.php/jiemar/article/view/38
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Prediksi Jumlah Kedatangan Pasien Puskesmas Menggunakan Metode Backpropagation Artificial Neural Network
ARTICLE HISTORY
Issue
Section
Copyright (c) 2024 Sandi Satria Alamsyah, Maimunah Maimunah, Pristi Sukmasetya
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).