Sistem Pendukung Keputusan Dalam Memilih Bibit Kedelai Menggunakan Kombinasi Metode TOPSIS dan ROC
DOI:
https://doi.org/10.30865/klik.v4i3.1339Keywords:
Alternative; Decision; Ranking; ROC; TOPSISAbstract
To increase agricultural yields, seed selection is very important, one of which is in soybean plants, the problem that arises is the absence of a decision support system model in determining good soybean seeds for soybean farmers. So, farmers only choose existing soybean seeds based on the recommendations of fellow soybean farmers. This study aims to conduct a combination of ROC and TOPSIS can help in managing the complexity of determining agricultural seeds more efficiently. This is because ROC helps in sequencing variables, whereas TOPSIS helps in choosing the optimal alternative. This combination allows stakeholders to make more informed and rational decisions. The ROC method is a multivariate analysis technique used to analyze data that involves sorting or ranking variables measured in a group or population. ROC can be an effective analytical tool in helping stakeholders optimize their strategies or policies in a variety of situations and industries that require a deep understanding of data sequencing or ranking. The Technique for Order Preference by Similarity to Ideal Solution method or often known as the TOPSIS method is a decision-making analysis approach used to assist stakeholders in evaluating alternatives based on a number of predetermined criteria. The combination of ROC and TOPSIS can provide a deeper understanding of the structure of relationships between variables and their impact on alternative rankings. Based on the results of the ranking of agricultural seeds that get 1st Rank, namely Grobongan with a value of 0.54047, 2nd Rank, namely Anjasmoro with a value of 0.5, 3rd Rank, namely Detap 1 with a value of 0.43828, 4th Rank, Dena 1 with a value of 0.43457, and 5th Rank, namely Dering 1 with a value of 0.40553.
Downloads
References
N. Nuroji, “Penerapan Multi-Attribute Utility Theory (MAUT) Dalam Penentuan Pegawai Terbaik,” J. Ilm. Inform. dan Ilmu Komput., vol. 1, no. 2, pp. 46–53, 2022.
S. K. Zega, A. S. Harahap, H. H. Sihite, and I. Saputra, “Sistem Pendukung Keputusan Aplikasi Nobar Online Terbaik Dengan Menerapkan Metode EDAS Dengan Pembobotan ROC,” KOMIK (Konferensi Nas. Teknol. Inf. dan Komputer), vol. 6, no. 1, pp. 809–818, 2023.
I. G. I. Sudipa et al., MULTI CRITERIA DECISION MAKING: Teori & Penerapan Metode Pengambilan Keputusan dengan MCDM. PT. Sonpedia Publishing Indonesia, 2023.
F. Susanto, Pengenalan Sistem Pendukung Keputusan. Deepublish, 2020.
R. Torres-Sanchez, H. Navarro-Hellin, A. Guillamon-Frutos, R. San-Segundo, M. C. Ruiz-Abellón, and R. Domingo-Miguel, “A decision support system for irrigation management: Analysis and implementation of different learning techniques,” Water, vol. 12, no. 2, p. 548, 2020.
F. Psarommatis and D. Kiritsis, “A hybrid Decision Support System for automating decision making in the event of defects in the era of Zero Defect Manufacturing,” J. Ind. Inf. Integr., vol. 26, p. 100263, 2022.
S. Kusumadewi, H. Wahyuningsih, T. Informatika, U. I. Indonesia, U. I. Indonesia, and P. Korespondensi, “Model Sistem Pendukung Keputusan Kelompok Untuk Penilaian Gangguan Depresi , Kecemasan Dan Stress Berdasarkan Dass-42 Group Decision Support System Model for Assessment of Depression , Anxiety and Stress Disorders Based on Dass-42,” Model Sist. Pendukung Keputusan Kelompok Untuk Penilai. Gangguan Depresi, Kecemasan Dan Stress Berdasarkan Dass-42, vol. 7, no. 2, pp. 219–228, 2020, doi: 10.25126/jtiik.202071052.
L. V. Aprilian and M. H. K. Saputra, Belajar cepat metode SAW. Kreatif, 2020.
M. Fernandes, S. M. Vieira, F. Leite, C. Palos, S. Finkelstein, and J. M. C. Sousa, “Clinical decision support systems for triage in the emergency department using intelligent systems: a review,” Artif. Intell. Med., vol. 102, p. 101762, 2020.
A. Ullah, S. Hussain, A. Wasim, and M. Jahanzaib, “Development of a decision support system for the selection of wastewater treatment technologies,” Sci. Total Environ., vol. 731, p. 139158, 2020.
E. T. Amboro, “Perancangan Sistem Pendukung Keputusan Pemilihan Bibit Kelengkeng Berkualitas dengan Metode AHP,” in Prosiding Seminar Nasional Teknologi Informasi dan Komunikasi (SENATIK), 2021, vol. 4, no. 1, pp. 109–119.
H. K. Chan, X. Sun, and S.-H. Chung, “When should fuzzy analytic hierarchy process be used instead of analytic hierarchy process?,” Decis. Support Syst., vol. 125, p. 113114, 2019.
L. G. Ramón?Canul et al., “Technique for order of preference by similarity to ideal solution (TOPSIS) method for the generation of external preference mapping using rapid sensometric techniques,” J. Sci. Food Agric., vol. 101, no. 8, pp. 3298–3307, 2021.
E. Aydo?du, E. Güner, B. Aldemir, and H. Aygün, “Complex spherical fuzzy TOPSIS based on entropy,” Expert Syst. Appl., vol. 215, p. 119331, 2023.
M. Mojaver, R. Hasanzadeh, T. Azdast, and C. B. Park, “Comparative study on air gasification of plastic waste and conventional biomass based on coupling of AHP/TOPSIS multi-criteria decision analysis,” Chemosphere, vol. 286, p. 131867, 2022.
S. Setiawansyah, A. Surahman, A. T. Priandika, and S. Sintaro, Penerapan Sistem Pendukung Keputusan pada Sistem Informasi. Bandar Lampung: CV Keranjang Teknologi Media, 2023. [Online]. Available: https://buku.techcartpress.com/detailebook?id=1/penerapan-sistem-pendukung-keputusan-pada-sistem-informasi/setiawansyah-ade-surahman-adhie-thyo-priandika-sanriomi-sintaro
D. D. Trung, “Application of TOPSIS and PIV methods for multi-criteria decision making in hard turning process,” J. Mach. Eng., vol. 21, no. 4, pp. 57–71, 2021.
M. O. Esangbedo, J. Xue, S. Bai, and C. O. Esangbedo, “Relaxed Rank Order Centroid Weighting MCDM Method With Improved Grey Relational Analysis for Subcontractor Selection: Photothermal Power Station Construction,” IEEE Trans. Eng. Manag., 2022.
I. Oktaria, “Kombinasi Metode Multi-Attribute Utility Theory (MAUT) dan Rank Order Centroid (ROC) dalam Pemilihan Kegiatan Ekstrakulikuler,” J. Ilm. Inform. dan Ilmu Komput., vol. 2, no. 1, pp. 1–11, 2023.
A. Karim, S. Esabella, K. Kusmanto, M. Mesran, and U. Hasanah, “Analisa Penerapan Metode Operational Competitiveness Rating Analysis (OCRA) dan Metode Multi Attribute Utility Theory (MAUT) Dalam Pemilihan Calon Karyawan Tetap Menerapkan Pembobotan Rank Order Centroid (ROC),” J. Media Inform. Budidarma, vol. 5, no. 4, pp. 1674–1687, 2021.
A. Iskandar, “Sistem Pendukung Keputusan Kelayakan Penerima Bantuan Dana KIP Kuliah Menggunakan Metode ROC-EDAS,” Build. Informatics, Technol. Sci., vol. 4, no. 2 SE-Articles, Sep. 2022, doi: 10.47065/bits.v4i2.2265.
Y. D. Lestari, “Sistem Pendukung Keputusan Dalam Memilih Bibit Jambu Madu Terbaik Dengan Menggunakan Metode MOORA DAN SAW,” Algoritm. J. Ilmu Komput. Dan Inform., vol. 4, no. 2, 2020.
W. Yahyan and M. I. A. Siregar, “Sistem Pendukung Keputusan Pemilihan Bibit Benih Padi Unggul Berbasis Webmenggunakan Metode AHP (Analytical Hierarchy Process),” Menara Ilmu, vol. 13, no. 11, 2019.
B. Ali, “Analisis Sistem Pendukung Keputusan Pemilihan Bibit Kakao Menggunakan Metode AHP,” d’ComPutarE J. Ilm. Inf. Technol., vol. 9, no. 2, pp. 8–17, 2020.
A. Kurniawan, “Perancangan Aplikasi E-Voting pada Pemilihan Ketua Osis Berbasis Mobile,” J. Ilm. Inform. dan Ilmu Komput., vol. 2, no. 1, pp. 26–31, 2023.
R. Aldisa, F. Nugroho, M. Mesran, S. A. Sinaga, and K. Sussolaikah, “Sistem Pendukung Keputusan Menentukan Sales Terbaik Menerapkan Metode Simple Additive Weighting (SAW),” J. Inf. Syst. Res., vol. 3, no. 4 SE-Articles, Jul. 2022, doi: 10.47065/josh.v3i4.1955.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Sistem Pendukung Keputusan Dalam Memilih Bibit Kedelai Menggunakan Kombinasi Metode TOPSIS dan ROC
ARTICLE HISTORY
Issue
Section
Copyright (c) 2023 Heni Sulistiani, Untoro Adji, Sufiatul Maryana, Setiawansyah

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).