Implementasi Machine Learning Menggunakan Algoritma K-Means Untuk Klasifikasi Sekolah Dasar


Authors

  • Yudistra Bagus Pratama Universitas Muhammadiyah Bangka Belitung, Pangkal Pinang, Indonesia
  • Agung Setiawan Universitas Muhammadiyah Bangka Belitung, Pangkal Pinang, Indonesia

DOI:

https://doi.org/10.30865/resolusi.v4i3.1591

Keywords:

Data Science; Machine Learning; Classification; Elementary School; Big Data

Abstract

The majority of parents take into account their child's educational standing to some extent. The school's status, number of schools, number of teachers, number of students, and number of classrooms are crucial considerations for parents when selecting a school. The problem is that data regarding the classification of elementary schools in the city of Pangkalpinang is not yet available so that parents and related agencies do not yet know the status & classification of schools in their area. The utilisation of machine learning has been possible for analysing data from Pangkalpinang City School, owing to the advancements in data science technology. This study generates a categorization of school data using clusters of school status. The research used an unsupervised machine learning (ML) model called K-means clustering for classification purposes. The dataset containing 14 sub-district records in Pangkalpinang, utilised for the k-means clustering technique, was acquired from the official website of the Ministry of Education and Culture (https://dapo.kemdikbud.go.id/). The authenticity of the data was verified by the Pangkalpinang City Education and Culture Office. This research use data modelling to establish school standards and utilises an algorithm to assess the precision of school categorization according to its parameters. According to the cumulative Sillhoette scores obtained from the school status, Cluster 1 for 21.43% of the total, Cluster 2  for 28.25%, Cluster for 14.28%, Cluster 4 for 21.42%, and Cluster 5 for 14.29%. The cluster with the lowest attribute values, specifically cluster 2, exhibits the highest number of clusters as shown from the cumulative plot findings. The Pangkalpinang City Government can determine and categorise elementary-level schools by aggregating the number of resulting clusters, as the entity responsible for education and potential pupils. This encompasses measures such as expanding the number of primary schools in areas facing a scarcity of such institutions, augmenting the teaching workforce in schools that necessitate additional educators, accommodating more students in schools that have a need for smaller student-to-teacher ratios in specific regions, and enhancing classroom infrastructure in schools lacking adequate space for in-person instruction.

Downloads

Download data is not yet available.

References

T. Hartati, O. Nurdiawan, and E. Wiyandi, “Analisis Dan Penerapan Algoritma K-Means Dalam Strategi Promosi Kampus Akademi Maritim Suaka Bahari,” J. Sains Teknol. Transp. Marit., vol. 3, no. 1, pp. 1–7, 2021, doi: 10.51578/j.sitektransmar.v3i1.30.

D. T. Worung, S. R. U. A. Sompie, and A. Jacobus, “Implementasi K-Means dan K-NN pada Pengklasifikasian Citra Bunga,” J. Tek. Inform., vol. 15, no. 3, pp. 217–222, 2020, [Online]. Available: https://ejournal.unsrat.ac.id/v3/index.php/informatika/article/view/31965.

B. Mahesh, “Machine learning algorithms-a review,” Int. J. Sci. Res. (IJSR).[Internet], vol. 9, no. 1, pp. 381–386, 2020.

J. Bell, “What is machine learning?,” Mach. Learn. City Appl. Archit. Urban Des., pp. 207–216, 2022.

N. Burkart and M. F. Huber, “A survey on the explainability of supervised machine learning,” J. Artif. Intell. Res., vol. 70, pp. 245–317, 2021.

N. Li, M. Shepperd, and Y. Guo, “A systematic review of unsupervised learning techniques for software defect prediction,” Inf. Softw. Technol., vol. 122, p. 106287, 2020.

D. Yolanda, M. H. Hersyah, E. Marozi, and others, “Implementasi Metode Unsupervised Learning Pada Sistem Keamanan Dengan Optimalisasi Penyimpanan Kamera IP,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 5, no. 6, pp. 1099–1105, 2021.

F. Marisa, B. Ariefia, A. L. Maukar, and others, “Pendeteksian Daerah (Provinsi) Rawan Covid19 Dengan Metode Unsupervised Learning & Algoritma K-Medoids,” J. Teknol. Inf. dan Komun., vol. 12, no. 1, pp. 17–21, 2021.

K. P. Sinaga and M.-S. Yang, “Unsupervised K-means clustering algorithm,” IEEE access, vol. 8, pp. 80716–80727, 2020.

G. Gustientiedina, M. H. Adiya, and Y. Desnelita, “Penerapan Algoritma K-Means Untuk Clustering Data Obat-Obatan,” J. Nas. Teknol. Dan Sist. Inf., vol. 5, no. 1, pp. 17–24, 2019.

A. Z. Saputra, N. Suarna, and G. D. Lestari, “Klasterisasi Nilai Ujian Sekolah Menggunakan Metode Algoritma K-Means,” J. Janitra Inform. dan Sist. Inf., vol. 3, no. 1, pp. 1–9, 2023, doi: 10.25008/janitra.v3i1.153.

A. Septianingsih, “Analisis K-Means Clustering Pada Pemetaan Provinsi Indonesia Berdasarkan Indikator Rumah Layak Huni,” J. Lebesgue J. Ilm. Pendidik. Mat. Mat. dan Stat., vol. 3, no. 1, pp. 224–241, 2022.

N. Nurahman, A. Purwanto, and S. Mulyanto, “Klasterisasi Sekolah Menggunakan Algoritma K-Means berdasarkan Fasilitas, Pendidik, dan Tenaga Pendidik,” MATRIK J. Manajemen, Tek. Inform. dan Rekayasa Komput., vol. 21, no. 2, pp. 337–350, 2022.

Y. B. Pratama and N. P. Dalimunthe, “Implementasi Teknik Computer Vision Untuk Deteksi Viridiplantae Pada Lahan Pasca Tambang,” vol. 3, no. 1, pp. 64–72, 2022, doi: 10.47065/bulletincsr.v3i1.193.

A. M. Ikotun, A. E. Ezugwu, L. Abualigah, B. Abuhaija, and J. Heming, “K-means clustering algorithms: A comprehensive review, variants analysis, and advances in the era of big data,” Inf. Sci. (Ny)., vol. 622, pp. 178–210, Apr. 2023, doi: 10.1016/j.ins.2022.11.139.

H. Hu, J. Liu, X. Zhang, and M. Fang, “An Effective and Adaptable K-means Algorithm for Big Data Cluster Analysis,” Pattern Recognit., vol. 139, Jul. 2023, doi: 10.1016/j.patcog.2023.109404.

R. M. Adnan, P. Khosravinia, B. Karimi, and O. Kisi, “Prediction of hydraulics performance in drain envelopes using Kmeans based multivariate adaptive regression spline,” Appl. Soft Comput., vol. 100, p. 107008, 2021.

E. Khaledian, S. Pandey, P. Kundu, and A. K. Srivastava, “Real-time synchrophasor data anomaly detection and classification using isolation forest, kmeans, and loop,” IEEE Trans. Smart Grid, vol. 12, no. 3, pp. 2378–2388, 2020.

S. Rusmayana, A. Faqih, and A. Bahtiar3, “PENERAPAN METODE ALGORITMA K-MEANS DALAM PEMETAAN PESERTA DIKLAT KETERAMPILAN PELAUT DI SMKN 1 MUNDU,” J. Sist. Inf. dan Manaj., vol. 10, no. 2, 2022.

N. T. Hartanti, “Metode Elbow dan K-Means Guna Mengukur Kesiapan Siswa SMK Dalam Ujian Nasional,” J. Nas. Teknol. dan Sist. Inf., vol. 6, no. 2, pp. 82–89, 2020, doi: 10.25077/teknosi.v6i2.2020.82-89.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Implementasi Machine Learning Menggunakan Algoritma K-Means Untuk Klasifikasi Sekolah Dasar

Dimensions Badge

ARTICLE HISTORY


Published: 2024-01-31
Abstract View: 1264 times
PDF Download: 962 times