Implementasi Machine Learning Menggunakan Algoritma K-Means Untuk Klasifikasi Sekolah Dasar
DOI:
https://doi.org/10.30865/resolusi.v4i3.1591Keywords:
Data Science; Machine Learning; Classification; Elementary School; Big DataAbstract
The majority of parents take into account their child's educational standing to some extent. The school's status, number of schools, number of teachers, number of students, and number of classrooms are crucial considerations for parents when selecting a school. The problem is that data regarding the classification of elementary schools in the city of Pangkalpinang is not yet available so that parents and related agencies do not yet know the status & classification of schools in their area. The utilisation of machine learning has been possible for analysing data from Pangkalpinang City School, owing to the advancements in data science technology. This study generates a categorization of school data using clusters of school status. The research used an unsupervised machine learning (ML) model called K-means clustering for classification purposes. The dataset containing 14 sub-district records in Pangkalpinang, utilised for the k-means clustering technique, was acquired from the official website of the Ministry of Education and Culture (https://dapo.kemdikbud.go.id/). The authenticity of the data was verified by the Pangkalpinang City Education and Culture Office. This research use data modelling to establish school standards and utilises an algorithm to assess the precision of school categorization according to its parameters. According to the cumulative Sillhoette scores obtained from the school status, Cluster 1 for 21.43% of the total, Cluster 2 for 28.25%, Cluster for 14.28%, Cluster 4 for 21.42%, and Cluster 5 for 14.29%. The cluster with the lowest attribute values, specifically cluster 2, exhibits the highest number of clusters as shown from the cumulative plot findings. The Pangkalpinang City Government can determine and categorise elementary-level schools by aggregating the number of resulting clusters, as the entity responsible for education and potential pupils. This encompasses measures such as expanding the number of primary schools in areas facing a scarcity of such institutions, augmenting the teaching workforce in schools that necessitate additional educators, accommodating more students in schools that have a need for smaller student-to-teacher ratios in specific regions, and enhancing classroom infrastructure in schools lacking adequate space for in-person instruction.
Downloads
References
T. Hartati, O. Nurdiawan, and E. Wiyandi, “Analisis Dan Penerapan Algoritma K-Means Dalam Strategi Promosi Kampus Akademi Maritim Suaka Bahari,” J. Sains Teknol. Transp. Marit., vol. 3, no. 1, pp. 1–7, 2021, doi: 10.51578/j.sitektransmar.v3i1.30.
D. T. Worung, S. R. U. A. Sompie, and A. Jacobus, “Implementasi K-Means dan K-NN pada Pengklasifikasian Citra Bunga,” J. Tek. Inform., vol. 15, no. 3, pp. 217–222, 2020, [Online]. Available: https://ejournal.unsrat.ac.id/v3/index.php/informatika/article/view/31965.
B. Mahesh, “Machine learning algorithms-a review,” Int. J. Sci. Res. (IJSR).[Internet], vol. 9, no. 1, pp. 381–386, 2020.
J. Bell, “What is machine learning?,” Mach. Learn. City Appl. Archit. Urban Des., pp. 207–216, 2022.
N. Burkart and M. F. Huber, “A survey on the explainability of supervised machine learning,” J. Artif. Intell. Res., vol. 70, pp. 245–317, 2021.
N. Li, M. Shepperd, and Y. Guo, “A systematic review of unsupervised learning techniques for software defect prediction,” Inf. Softw. Technol., vol. 122, p. 106287, 2020.
D. Yolanda, M. H. Hersyah, E. Marozi, and others, “Implementasi Metode Unsupervised Learning Pada Sistem Keamanan Dengan Optimalisasi Penyimpanan Kamera IP,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 5, no. 6, pp. 1099–1105, 2021.
F. Marisa, B. Ariefia, A. L. Maukar, and others, “Pendeteksian Daerah (Provinsi) Rawan Covid19 Dengan Metode Unsupervised Learning & Algoritma K-Medoids,” J. Teknol. Inf. dan Komun., vol. 12, no. 1, pp. 17–21, 2021.
K. P. Sinaga and M.-S. Yang, “Unsupervised K-means clustering algorithm,” IEEE access, vol. 8, pp. 80716–80727, 2020.
G. Gustientiedina, M. H. Adiya, and Y. Desnelita, “Penerapan Algoritma K-Means Untuk Clustering Data Obat-Obatan,” J. Nas. Teknol. Dan Sist. Inf., vol. 5, no. 1, pp. 17–24, 2019.
A. Z. Saputra, N. Suarna, and G. D. Lestari, “Klasterisasi Nilai Ujian Sekolah Menggunakan Metode Algoritma K-Means,” J. Janitra Inform. dan Sist. Inf., vol. 3, no. 1, pp. 1–9, 2023, doi: 10.25008/janitra.v3i1.153.
A. Septianingsih, “Analisis K-Means Clustering Pada Pemetaan Provinsi Indonesia Berdasarkan Indikator Rumah Layak Huni,” J. Lebesgue J. Ilm. Pendidik. Mat. Mat. dan Stat., vol. 3, no. 1, pp. 224–241, 2022.
N. Nurahman, A. Purwanto, and S. Mulyanto, “Klasterisasi Sekolah Menggunakan Algoritma K-Means berdasarkan Fasilitas, Pendidik, dan Tenaga Pendidik,” MATRIK J. Manajemen, Tek. Inform. dan Rekayasa Komput., vol. 21, no. 2, pp. 337–350, 2022.
Y. B. Pratama and N. P. Dalimunthe, “Implementasi Teknik Computer Vision Untuk Deteksi Viridiplantae Pada Lahan Pasca Tambang,” vol. 3, no. 1, pp. 64–72, 2022, doi: 10.47065/bulletincsr.v3i1.193.
A. M. Ikotun, A. E. Ezugwu, L. Abualigah, B. Abuhaija, and J. Heming, “K-means clustering algorithms: A comprehensive review, variants analysis, and advances in the era of big data,” Inf. Sci. (Ny)., vol. 622, pp. 178–210, Apr. 2023, doi: 10.1016/j.ins.2022.11.139.
H. Hu, J. Liu, X. Zhang, and M. Fang, “An Effective and Adaptable K-means Algorithm for Big Data Cluster Analysis,” Pattern Recognit., vol. 139, Jul. 2023, doi: 10.1016/j.patcog.2023.109404.
R. M. Adnan, P. Khosravinia, B. Karimi, and O. Kisi, “Prediction of hydraulics performance in drain envelopes using Kmeans based multivariate adaptive regression spline,” Appl. Soft Comput., vol. 100, p. 107008, 2021.
E. Khaledian, S. Pandey, P. Kundu, and A. K. Srivastava, “Real-time synchrophasor data anomaly detection and classification using isolation forest, kmeans, and loop,” IEEE Trans. Smart Grid, vol. 12, no. 3, pp. 2378–2388, 2020.
S. Rusmayana, A. Faqih, and A. Bahtiar3, “PENERAPAN METODE ALGORITMA K-MEANS DALAM PEMETAAN PESERTA DIKLAT KETERAMPILAN PELAUT DI SMKN 1 MUNDU,” J. Sist. Inf. dan Manaj., vol. 10, no. 2, 2022.
N. T. Hartanti, “Metode Elbow dan K-Means Guna Mengukur Kesiapan Siswa SMK Dalam Ujian Nasional,” J. Nas. Teknol. dan Sist. Inf., vol. 6, no. 2, pp. 82–89, 2020, doi: 10.25077/teknosi.v6i2.2020.82-89.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Implementasi Machine Learning Menggunakan Algoritma K-Means Untuk Klasifikasi Sekolah Dasar
ARTICLE HISTORY
Issue
Section
Copyright (c) 2024 Yudistra Bagus Pratama, Agung Setiawan

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).