Klasifikasi Customer Churn pada Telekomunikasi Industri Untuk Retensi Pelanggan Menggunakan Algoritma C4.5
DOI:
https://doi.org/10.30865/klik.v3i6.829Keywords:
Data Mining; Characteristics of Customer Churn; C4.5 Algorithm; Telecommunication Companies; Rapid MinerAbstract
Ignorance of telecommunications companies regarding the reasons and characteristics of customer churn causes telecommunications companies to suffer huge losses. This makes customer churn a big problem for telecommunications companies. This study uses data mining with classification techniques as a solution to analyze customer churn characteristics. This research will use Rapid Miner and the C4.5 algorithm to carry out the data mining process. . The purpose of this research is to find out what are the characteristics of customer churn so that companies can make policies that can retain customers and increase customer retention. This research is based on CRISP-DM. Data taken from kaggle.com with 21 attributes and 7034 rows of data and data preparation will be carried out. From the research results it is known that there are 5 attributes that have a considerable influence on customer churn, namely contracts, InternetService, TotalChares, tenure, PaperlessBilling, MultipleLines, StreamingMovies. And from the results of this study has an accuracy rate of 79.53%.
Downloads
References
M. Syarif and W. Nugraha, “MWMOTE DALAM MENGATASI KETIDAKSEIMBANGAN KELAS PADA PREDIKSI CHURN MENGGUNAKAN KLASIFIKASI C4.5,” Jurnal Mahasiswa Teknik Informatika, vol. 7, Feb. 2023.
Anita, A. Wicaksono, and T. N. Padilah, “Pengaruh Jumlah Record Dataset Terhadap Algoritma Klasifikasi Berdasarkan Data Customer Churn,” Jurnal Ilmiah Informatika, vol. 6, no. 1, pp. 1–10, Jun. 2021, doi: 10.35316/jimi.v6i1.1223.
H. N. Irmanda, R. Astriratma, and S. Afrizal, “PERBANDINGAN METODE JARINGAN SYARAF TIRUAN DAN POHON KEPUTUSAN UNTUK PREDIKSI CHURN,” JSI?: Jurnal Sistem Informasi (E-Journal), vol. 11, no. 2, 2019, [Online]. Available: http://ejournal.unsri.ac.id/index.php/jsi/index
Y. Tri Utami, D. Asiah Shofiana, Y. Heningtyas, J. Ilmu Komputer FMIPA Universitas Lampung Jl Soemantri Brodjonegoro No, and B. Lampung, “Penerapan Algoritma C4.5 Untuk Prediksi Churn Rate Pengguna Jasa Telekomunikasi,” 2020.
A. Wicaksono, “Uji Performa Teknik Klasifikasi untuk Memprediksi Customer Churn,” Bianglala Informatika, vol. 9, no. 1, 2021.
R. Govindaraju et al., “PERANCANGAN SISTEM PREDIKSI CHURN PELANGGAN PT. TELEKOMUNIKASI SELULER DENGAN MEMANFAATKAN PROSES DATA MINING.”
R. Pratama, M. I. Herdiansyah, D. Syamsuar, and A. Syazili, “Prediksi Customer Retention Perusahaan Asuransi Menggunakan Machine Learning,” Jurnal Sisfokom (Sistem Informasi dan Komputer), vol. 12, no. 1, pp. 96–104, Mar. 2023, doi: 10.32736/sisfokom.v12i1.1507.
F. A. Pambudi, A. P. Windarto, M. Fauzan, J. T. Hardinata, and R. Winanjaya, “Analisis Klasifikasi C4.5 Pada Pola Pembayaran Sepeda Motor Adira Cabang Pematangsiantar,” Kajian Ilmiah Informatika dan Komputer, vol. 1, no. 4, pp. 160–169, 2021, [Online]. Available: https://djournals.com/klik
Y. Indah, “Prediksi Tingkat Kepuasan Pelayanan Online Menggunakan Metode Algoritma C4.5,” Jurnal Informatika Ekonomi Bisnis, pp. 59–64, Jun. 2022, doi: 10.37034/infeb.v4i2.99.
Y. Mardi, “Data Mining?: Klasifikasi Menggunakan Algoritma C4.5,” Jurnal Edik informatika.
B. G. Sudarsono, M. I. Leo, A. Santoso, and F. Hendrawan, “ANALISIS DATA MINING DATA NETFLIX MENGGUNAKAN APLIKASI RAPID MINER,” JBASE - Journal of Business and Audit Information Systems, vol. 4, no. 1, Apr. 2021, doi: 10.30813/jbase.v4i1.2729.
I. Latief, A. Subekti, and W. Gata, “PREDIKSI TINGKAT PELANGGAN CHURN PADA PERUSAHAAN TELEKOMUNIKASI DENGAN ALGORITMA ADABOOST,” Jurnal Informatika, vol. 21, 2021.
L. Navia, “Klasifikasi Nasabah Menggunakan Algoritma C4.5 Sebagai Dasar Pemberian Kredit,” JURNAL INOVTEK POLBENG, vol. 1, no. 2, 2016.
K. Aidi Saputra, J. Tata Hardinata, M. Ridwan Lubis, S. Retno Andani, and I. Syahputra Saragih, “KLIK: Kajian Ilmiah Informatika dan Komputer Klasifikasi Algoritma C4.5 Dalam Penerapan Tingkat Kepuasan Siswa Terhadap Media Pembelajaran Online,” Media Online), vol. 1, no. 3, pp. 113–118, 2020, [Online]. Available: https://djournals.com/klik
D. Marlina and M. Bakri, “PENERAPAN DATA MINING UNTUK MEMPREDIKSI TRANSAKSI NASABAH DENGAN ALGORITMA C4.5,” Jurnal Teknologi dan Sistem Informasi (JTSI), vol. 2, Mar. 2021.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Klasifikasi Customer Churn pada Telekomunikasi Industri Untuk Retensi Pelanggan Menggunakan Algoritma C4.5
ARTICLE HISTORY
Issue
Section
Copyright (c) 2023 Stevan Desena Damanik, Muhammad Ihsan Jambak

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).