Prediksi Persediaan Obat Pada Apotek Menggunakan Algoritma Decision Tree


Authors

  • Sinta Amanda Pratiwi Universitas Buana Perjuangan Karawang, Karawang, Indonesia
  • Ahmad Fauzi Universitas Buana Perjuangan Karawang, Karawang, Indonesia
  • Santi Arum Puspita Lestari Universitas Buana Perjuangan Karawang, Karawang, Indonesia
  • Yana Cahyana Universitas Buana Perjuangan Karawang, Karawang, Indonesia

DOI:

https://doi.org/10.30865/klik.v4i4.1681

Keywords:

Prediction; Medicine Stock; Decision Tree; Accuracy; Precision; Recall; F1-Score

Abstract

A pharmacy is a place for buying and selling drugs and must have an adequate stock of drug supplies so that it can serve consumers in need. In some pharmacies there are problems related to drug supply. Often the drugs needed by the community are empty in stock, while the drugs that are less needed are stored in the warehouse. Therefore, this study aims to conduct a prediction model of drug supply so that it can meet consumer needs. This study uses drug inventory data at Kaligandu Pharmacy, the data has 2745 rows and 5 attributes consisting of "Item Name", "Unit", "Previous Stock", "Rill Stock", and "Restock". The method used in this case is the Decision Tree algorithm with Accuracy, Precision, Recall, and F1-Score evaluation methods to see which drugs are available and not available based on "Unit". The results showed that the Decision Tree algorithm obtained good results by using a data comparison of 80 to 20 resulting in an accuracy value of 98.71%. In addition, the resulting values of Precision, Recall, and F1-Score are not much different, namely 0.9872, 0.9872, and 0.9867. The 70 to 30 data comparison produces a smaller value but is not much different from the results of 80 to 20, namely the accuracy of 98.28%, Precision 0.9832, Recall 0.9828, and F1-Score 0.9804. with these results this research can be continued by implementing drug inventory prediction using Decision Tree into an application

Downloads

Download data is not yet available.

References

Aida Fitriyani, “Sistem Prediksi Aturan Stock Obat Dengan Metode Iterative Dichotomiser (ID3),” Journal of Information and Information Security (JIFORTY), vol. 4, no. 1, p. 12, Jun. 2021, doi: 10.29100/jipi.v4i1.781.

Winanda Delrinata, “Implementasi Algoritma ApriorinUntuk Menentukan Stok Obat,” Jurnal SISFOKOM (Sistem Informasi dan Komputer), 2020, doi: 10.32736/sisfokom.xx.xx.

N. Dwi Anggraeni and A. Octaviano, “Penerapan Data Mining Untuk Klasifikasi Persediaan Barang Menggunakan Metode K-Nearest Neighbor & C4.5 Dan Prediksi Persediaan Barang Menggunakan Metode Safety Stock & ROP (Studi Kasus?: PT. Macro Jaya Agung),” OKTAL?: Jurnal Ilmu Komputer dan Science , vol. 2, no. 7, 2023, [Online]. Available: https://journal.mediapublikasi.id/index.php/oktal

F. P. Dewanti, S. Setiyowati, and S. Harjanto, “Prediksi Persediaan Obat Untuk Proses Penjualan Menggunakan Metode Decision Tree Pada Apotek,” Jurnal Teknologi Informasi dan Komunikasi (TIKomSiN), vol. 10, no. 1, May 2022, doi: 10.30646/tikomsin.v10i1.604.

Henky Saputra, Pengelolaan Persediaan Obat . 2020.

K. Rosita Dewi and K. Farouq Mauladi, “Analisa Algoritma C4.5 untuk Prediksi Penjualan Obat Pertanian di Toko Dewi Sri,” 2020.

N. Setyadi Putri, “Penerapan Data MiningUntuk Prediksi Hasil Produksi Karet Menggunakan Algoritma Decision TreeC4.5,” Teknologipintar.org, vol. 2, 2022.

N. Wardani, Penerapan Data Mining Dalam Analytic CRM. Yayasan Kita Menulis, 2020.

G. Gustientiedina, M. H. Adiya, and Y. Desnelita, “Penerapan Algoritma K-Means Untuk Clustering Data Obat-Obatan,” Jurnal Nasional Teknologi dan Sistem Informasi, vol. 5, no. 1, pp. 17–24, Apr. 2019, doi: 10.25077/teknosi.v5i1.2019.17-24.

S. Ben Jabeur, A. Sadaaoui, A. Sghaier, and R. Aloui, “Machine learning models and cost-sensitive decision trees for bond rating prediction,” Journal of the Operational Research Society, vol. 71, no. 8, pp. 1161–1179, Aug. 2020, doi: 10.1080/01605682.2019.1581405.

R. Ridho, “Klasifikasi Diagnosis Penyakit Covid-19 Menggunakan Metode Decision Tree,” 2021. [Online]. Available: https://jurnal.umj.ac.id/index.php/just-it/index

A. M. Siregar and A. Fauzi, “Klasifikasi Kab Kota Provinsi Jawa Barat Berdasarkan Pendapatan Dari Sektor Pertanian Dengan Algoritma Decision Tree,” Faktor Exacta, vol. 13, no. 1, p. 1, Jun. 2020, doi: 10.30998/faktorexacta.v13i1.5542.

S. Suwartini, T. Hartati, Martanto, N. Rahaningsih, and G. Dwilestari, “Prediksi Perbaikan Jalan Nasional Dengan Menggunakan Algoritma Decision Tree,” KOPERTIP: Jurnal Ilmiah Manajemen Informatika dan Komputer, 2022.

D. Elisa Sinaga et al., “Kajian Ilmiah Informatika dan Komputer Analisis Data Mining Algoritma Decision Tree Pada Prediksi Persediaan Obat (Studi Kasus?: Apotek Franch Farma),” vol. 2, no. 4, pp. 123–131, 2022, [Online]. Available: https://djournals.com/klik

R. Latifah, E. Setia Wulandari, and dan Priadhana Edi Kreshna, “Model Decision Tree untuk Prediksi Jadwal Kerja menggunakan Scikit-Learn,” 2019.

Z. Muttaqin and E. Srihartini, “Penerapan Metode Regresi Linier Sederhana Untuk Prediksi Persediaan Obat Jenis Tablet,” Sistem Informasi |, vol. 9, no. 1, pp. 12–16, 2022.

A. Fikri and W. Verina, “PENERAPAN DATA MINING UNTUK PREDIKSI PENJUALAN ALAT MEDIS MENGGUNAKAN ALGORITMA C4.5 PT. MURNI INDAH SENTOSA Implementation Of Mining Data For Sales Prediction Of Medical Tools Using C4.5 Algorithm PT. Murni Indah Sentosa,” 70. InfoSys Journal, vol. 5, pp. 70–82, 2020.

T. Septiani, N. Koeswara, ) M Sukrisno Mardiyanto, ) Muhamad, and A. Ghani, “Penerapan Particle Swarm Optimization(PSO) Dalam Pemilihan Atribut Untuk Meningkatkan Akurasi Prediksi Diagnosis Penyakit Hepatitis Dengan Metode Naive Bayes,” Journal Speed-Sentra Penelitian Engineering dan Edukasi, vol. 12, 2020.

D. Nofriansyah and G. W. Nurcahyo, “Algoritma Data Mining Dan Pengujian,” 2019.

E. P. Orpa Krisda, E. Ripanti Faja, and Tursina, “Model Prediksi Awal Masa Studi Mahasiswa Menggunakan Algoritma Decision tree c4.5,” Jurnal Sistem dan Teknologi Informasi, vol. 7, 2019.

L. Qadrini, A. Seppewali, and A. Aina, “DECISION TREE DAN ADABOOST PADA KLASIFIKASI PENERIMA PROGRAM BANTUAN SOSIAL,” Jurnal Inovasi Penelitian, vol. 2, no. 7, 2021.

Q. Ren, H. zhang, D. Zhang, X. Zhao, L. Yan, and J. Rui, “A novel hybrid method of lithology identification based on k-means++ algorithm and fuzzy decision tree,” J Pet Sci Eng, vol. 208, Jan. 2022, doi: 10.1016/j.petrol.2021.109681.

D. Nike Aria Kurniawan, “Implementasi Metode Decision Tree pada Sistem Prediksi Status Gizi Balita,” 2023.

S. Sudianto, “Analisis Kinerja Algoritma Machine Learning Untuk Klasifikasi Emosi,” Building of Informatics, Technology and Science (BITS), vol. 4, no. 2, Sep. 2022, doi: 10.47065/bits.v4i2.2261.

N. Basuni and Amril Mutoi Siregar, “Comparison of the Accuracy of Drug User Classification Models Using Machine Learning Methods,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 7, no. 6, pp. 1348–1353, Dec. 2023, doi: 10.29207/resti.v7i6.5401.

B. P. Pratiwi, A. S. Handayani, and Sarjana, “Pengukuran Kinerja Sistem Kualitas Udara Dengan Teknologi WSN Menggunakan Confusion Matrix,” JURNAL INFORMATIKA UPGRIS, vol. 6, no. 2, 2020.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Prediksi Persediaan Obat Pada Apotek Menggunakan Algoritma Decision Tree

Dimensions Badge

ARTICLE HISTORY


Published: 2024-02-29
Abstract View: 1307 times
PDF Download: 1321 times

Most read articles by the same author(s)