Penerapan Algoritma C4.5 untuk Klasifikasi Tingkat Kedisiplinan Siswa Sekolah Menengah
DOI:
https://doi.org/10.47065/jieee.v5i1.2630Keywords:
Data Mining; Classification; Decision Tree; C4.5; ; Model Evaluation; Student PerformanceAbstract
Abstract?This study aims to evaluate the performance of the Decision Tree algorithm based on the entropy criterion (C4.5) in classifying student eligibility by considering both academic and non-academic data. The dataset consists of 200 entries with nine attributes, including attendance percentage, number of lateness incidents, disciplinary violations, average academic scores, participation, study hours, and extracurricular activities. Data processing was carried out through several stages, namely cleaning, transformation, feature selection, training and testing data splitting, and model evaluation using a confusion matrix. The experimental results show that the proposed model achieved an accuracy of 87.5%, an average precision of 85.6%, an average recall of 84.2%, and an F1-Score of 84.8%. These findings confirm that the C4.5 algorithm can be effectively applied to support student performance classification with a fairly high level of reliability.
Downloads
References
J. Triwidianti, F. Y. Alfian, and M. Prasojo, “Perbandingan Metode Data Mining Untuk Prediksi Prestasi Siswa Tingkat Pendidikan Menengah Kejuruan Pada Sekolah Menengah Kejuruan Negeri (SMKN 1) Gadingrejo Pringsewu Lampung,” Semin. Nas. Has. Penelit. dan Pengabdi. Masy. 2021, vol. 1, no. Smkn 1, pp. 126–133, 2021.
A. R. Pratama, R. R. Aryanto, and A. T. M. Pratama, “Model Klasifikasi Calon Mahasiswa Baru Untuk Sistem Rekomendasi Program Studi Sarjana Berbasis Machine Learning,” J. Teknol. Inf. dan Ilmu Komput., vol. 9, no. 4, pp. 725–734, 2022, doi: 10.25126/jtiik.2022934311.
F. Firmansyah and A. Yulianto, “Prediksi Hasil Belajar Menggunakan Naïve Bayes Classifier pada Tingkat Sekolah Dasar,” Remik, vol. 7, no. 2, pp. 1174–1182, 2023, doi: 10.33395/remik.v7i2.12375.
B. Novianti, T. Rismawan, and S. Bahri, “Implementasi Data Mining Dengan Algoritma C4.5 Untuk Penjurusan Siswa (Studi Kasus: Sma Negeri 1 Pontianak),” J. Coding, Sist. Komput. Untan, vol. 04, no. 3, pp. 75–84, 2016.
R. I. Fitria, R. P. Tulodo, N. T. Ujianto, and A. Sofian, “Perbandingan Algoritma Naive Dan Bayes Logistic Regression Untuk Penerimaan Siswa Baru (Studi Kasus Calon Siswa SMA Negri 1 Brebes),” J. Eng., vol. 15, no. 1, pp. 32–43, 2024, doi: 10.24905/jureng.v15i1.6.
Teguh Adrian and Nana Suarna, “Implementasi Data Mining Untuk Mengklasifikasi Hasil Kelulusan Madrasah Menggunakan Algoritma Naive Bayes,” J. Sci. Res. Dev., vol. 5, no. 2, pp. 1142–1160, 2024, doi: 10.56670/jsrd.v5i2.279.
J. R. S. Penda Sudarto Hasugian, “Penerapan Data Mining Untuk Pengelompokan Siswa Berdasarkan Nilai Akademik dengan Algoritma K-Means,” KLIK Kaji. Ilm. Inform. dan Komput., vol. 3, no. 3, pp. 262–268, 2022, [Online]. Available: https://djournals.com/klik
E. Ndruru and R. Limbong, “Implementasi Data Mining Dalam Pengelompokan Jurusan yang Diminati Siswa SMK Negeri 1 Lolowa’u menggunakan Metode Clustering | Ndruru | MEANS (Media Informasi Analisa dan Sistem),” MEANS (Media Inf. Anal. dan Sist., vol. 3, no. 2, pp. 107–113, 2018, [Online]. Available: http://ejournal.ust.ac.id/index.php/Jurnal_Means/article/view/273/pdfdssdx11
N. Nazifah, “Analisis Perbandingan Decision Tree Algoritma C4.5 dengan algoritma lainnya: Sistematic Literature Review,” J. Inform. dan Teknol. Komput. ( J-ICOM), vol. 4, no. 2, pp. 57–64, 2023, doi: 10.55377/j-icom.v4i2.7719.
A. Huday and Zaehol Fatah, “Penerapan Decision Tree C4.5 Dalam Memprediksi Predikat Terbaik Di Madrasah Ta’Hiliyah Ibrahimy,” J. Ilm. Multidisiplin Ilmu, vol. 2, no. 1, pp. 61–68, 2025, doi: 10.69714/be4q6n31.
A. P. HARYANTO and E. Martantoh, “Implementasi Algoritma C4.5 Untuk Sistem Prediksi Prestasi Siswa Di SMK Al-Islah Berbasis Web,” J. Teknol. Sist. Inf., vol. 3, no. 2, pp. 131–142, 2022, doi: 10.35957/jtsi.v3i2.2773.
D. L. S. Purnama and U. Apsiswanto, “Analysis of C4.5 Algorithm Performance for Predicting Student Achievement Based on Socio-Economic Status, Motivation, Discipline, and Past Achievement,” J. Comput. Networks, Archit. High Perform. Comput., vol. 7, no. 1, pp. 190–199, 2025, doi: 10.47709/cnahpc.v7i1.5143.
B. Baskoro, S. Sriyanto, and L. S. Rini, “Prediksi Penerima Beasiswa dengan Menggunakan Teknik Data Mining di Universitas Muhammadiyah Pringsewu,” Pros. Semin. Nas. Darmajaya, vol. 1, no. 0, pp. 87–94, 2021, [Online]. Available: https://jurnal.darmajaya.ac.id/index.php/PSND/article/view/2918
H. Susanto and S. Sudiyatno, “Data mining untuk memprediksi prestasi siswa berdasarkan sosial ekonomi, motivasi, kedisiplinan dan prestasi masa lalu,” J. Pendidik. Vokasi, vol. 4, no. 2, pp. 222–231, 2014, doi: 10.21831/jpv.v4i2.2547.
B. Hasmaulina, “Penerapan Data Mining Untuk Membentuk Kelompok Belajar Menggunakan Metode Clustering Di SMK Negeri 3 Seluma,” JUKOMIKA (Jurnal Ilmu Komput. dan Inform., vol. 4, no. 2, pp. 57–71, 2022, doi: 10.54650/jukomika.v4i2.368.
F. Rahman, D. Muhammad, and I. Firdaus, “Penerapan Data Mining Metode Naïve Bayes Untuk Prediksi Hasil Belajar Siswa Sekolah Menengah Pertama (Smp),” Al Ulum Sains dan Teknol., vol. 1, no. 2, pp. 76–78, 2016.
Ermanto, “Penerapan Data Mining Untuk Memprediksi Minat Siswa Yang Mendaftar DI SMK Al Amin Cibarusah,” Sigma J. Teknol. Pelita Bangsa, vol. 12, no. 3, 2021.
O. Y. Wardana, M. Ayub, and A. Widjaja, “Perbandingan Akurasi Model Pembelajaran Mesin untuk Prediksi Seleksi Masuk Perguruan Tinggi Negeri,” J. Tek. Inform. dan Sist. Inf., vol. 9, no. 1, pp. 141–153, 2023, doi: 10.28932/jutisi.v9i1.6126.
A. I. Rizmayanti, N. Hidayati, F. S. Nugraha, and W. Gata, “Penerapan Data Mining Untuk Memprediksi Kompetensi Siswa Menggunakan Metode Decission Tree ( Studi Kasus Smk Multicomp Depok ),” Swabumi, vol. 9, no. 1, pp. 9–18, 2021, doi: 10.31294/swabumi.v9i1.8363.
K. Khotimah, “Teknik Data Mining menggunakan Algoritma Decision Tree (C4.5) untuk Prediksi Seleksi Beasiswa Jalur KIP pada Universitas Muhammadiyah Kotabumi,” J. SIMADA (Sistem Inf. dan Manaj. Basis Data), vol. 4, no. 2, pp. 145–152, 2022, doi: 10.30873/simada.v4i2.3064.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Penerapan Algoritma C4.5 untuk Klasifikasi Tingkat Kedisiplinan Siswa Sekolah Menengah
ARTICLE HISTORY
Issue
Section
Copyright (c) 2025 selipuri, Rosyana Fitria Purnomo, Rosyana Fitria Purnomo, Rosyana Fitria Purnomo, Yodhi Yuniarthe

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).