Implementasi Naïve Bayes untuk Memprediksi Tingkat Kunjungan Pelanggan Menggunakan Algoritma Naïve Bayes
DOI:
https://doi.org/10.47065/jieee.v5i1.2474Keywords:
Naïve Bayes; Visit Rate Prediction; Data Mining; Data Classification; MSMEsAbstract
This study aims to implement the Naive Bayes algorithm in predicting customer visit rates at Kyemoona Kitchen by utilizing available historical data. With the development of digital technology, data analysis has become an important aspect in supporting business decision making. However, manual analysis of complex and diverse data can be challenging. Therefore, a machine learning-based approach, specifically Naive Bayes, is used to explore patterns in big data and generate accurate predictions. In this study, the data collected includes variables such as visit time, promotion type, weather conditions, holidays, and other factors. The Naive Bayes model achieved an accuracy of 85.6%, with other evaluation metrics such as precision of 82.4%, recall of 84.2%, and F1-score of 83.3%. The results show that this algorithm can identify significant factors, such as promotions and weather conditions, that affect customer visits. This study not only provides practical insights for Kyemoona Kitchen in planning data-driven operational strategies, but also aims to inspire other small and medium-sized enterprises (SMEs) to adopt similar analytical technologies. However, this study has limitations, such as dependence on data quality, which can affect the accuracy of the model. Therefore, it is recommended that future research combine Naive Bayes with other algorithms and use larger datasets for more reliable results.
Downloads
References
A. J. Soekandar and P. Pratiwi, “Difusi Inovasi untuk Keberlanjutan Bisnis Ritel Kecil: Strategi Pemasaran Digital,” J. Ilm. Manajemen, Ekon. dan Bisnis, vol. 2, no. 1, pp. 81–99, 2023, doi: 10.51903/jimeb.v2i1.596.
L. E. Kindangen and I. D. Palandeng, “Grup Jual Beli Silian Raya Analysis of Marketing Strategy Implementation on Sales at Silian Raya Buy,” J. EMBA J. Ris. Ekon. Manajemen, Bisnis dan Akunt., vol. 12, no. 3, pp. 1414–1424, 2024.
A. Hanafi, R. E. Supeni, and P. Winahyu, “Citra Merek, Suasana Toko, dan Kualitas Produk terhadap Loyalitas Konsumen,” Budg. J. Business, Manag. Account., vol. 3, no. 2, pp. 231–248, 2022, doi: 10.31539/budgeting.v3i2.3129.
P. R. T. Simamora, “Strategi Komunikasi Pemasaran terhadap Peningkatan Penjualan di Matahari Department Store Plaza Medan Fair,” J. Soc. Opin. J. Ilm. Ilmu Komun., no. 2, pp. 155–165, 2024.
A. Fauzi et al., “Penerapan Arsitektur Bisnis Intelijen Dalam Sistem Informasi E-Commerce,” J. Portofolio …, vol. 2, no. 3, pp. 219–229, 2023.
M. R. Mirzam, “Strategi Survival Umkm Batik Tulis Pekalongan Di Tengah Pandemi Covid-19 (Studi Kasus Pada ‘Batik Pesisir’ Pekalongan),” Balanc. J. Ekon. dan Bisnis Islam, vol. 2, no. 02, pp. 1–26, 2021, doi: 10.35905/balanca.v2i02.1532.
R. Aulia et al., “Prediksi Perguruan Tinggi Negeri dengan Menggunakan Metode Naive Bayes,” pp. 106–111, 2020.
L. Abdillah Fudholi, N. Rahaningsih, and R. Danar Dana, “Sentimen Analisis Perilaku Penggemar Coldplay Di Media Sosial Twitter Menggunakan Metode Naive Bayes,” JATI (Jurnal Mhs. Tek. Inform., vol. 8, no. 3, pp. 4150–4159, 2024, doi: 10.36040/jati.v8i3.9827.
N. Ali Basyah and A. Razak, “Metode Kualitatif Dalam Riset Bisnis?: Satu Tinjauan,” Econ. Didact., vol. 2, no. 1, pp. 1–9, 2020.
Y. J. Gea, “Di Sun Cafe Analysis of Sales Forecasting in Raw Material Inventory Management,” J. EMBA J. Ris. Ekon. Manajemen, Bisnis dan Akunt., vol. 11, no. 4, pp. 483–490, 2023.
N. Aulya, “Prediksi Kunjungan Wisata Kota Payakumbuh Menggunakan Metode Jaringan Syaraf Tiruan Backpropagation,” J. Inform. Ekon. Bisnis, vol. 4, pp. 7–9, 2022, doi: 10.37034/infeb.v4i4.157.
J. Suwartini et al., “Prediksi Kelulusan Mahasiswa Tepat Waktu Menggunakan Metode Naïve Bayes Dan Decision Tree Pada Universitas Stella Maris Sumba,” J. Informatics Busisnes, vol. 02, no. 03, pp. 362–368, 2024.
A. Meimela, “Prediksi Jumlah Kunjungan Wisatawan Mancanegara ke Indonesia,” Media Wisata, vol. 19, no. 1, pp. 34–41, 2021, doi: 10.36276/mws.v19i1.64.
A. R. Dana, R. V. Kristananda, M. Bagas, S. Wibowo, and D. A. Prasetya, “Perbandingan Algoritma Decision Tree dan Random Forest dengan Hyperparameter Tuning dalam Mendeteksi Penyakit Stroke,” Semin. Nas. Inform. Bela Negara, vol. 4, pp. 66–75, 2024.
D. I. Sumantiawan, “Metode Analasis Menggunakan Algoritma Random Forest Untuk Prediksi Biaya Asuransi Kesehatan,” J. Inform. dan Teknol., vol. 1, no. 1, pp. 1–8, 2024.
I. Werdiningsih et al., “Identifying Credit Card Fraud in Illegal Transactions Using Random Forest and Decision Tree Algorithms,” J. Sisfokom (Sistem Inf. dan Komputer), vol. 12, no. 3, pp. 477–484, 2023, doi: 10.32736/sisfokom.v12i3.1730.
F. Sinlae, Anugrah Sandy Yudhasti, and Arief Wibowo, “Comparative Analysis of Naïve Bayes and Decision Tree Algorithms in Data Mining Classification to Predict Weckerle Machine Productivity,” J. Syst. Eng. Inf. Technol., vol. 1, no. 2, pp. 47–51, 2022, doi: 10.29207/joseit.v1i2.3439.
M. Yasir and R. Suraji, “Perbandingan Metode Klasifikasi Naive Bayes, Decision, Tree, Random Forest Terhadap Analisis Sentimen Kenaikan Biaya Haji 2023 pada Media Sosial Youtube,” J. Cahaya Mandalika, vol. 3, no. 2, pp. 180–192, 2023.
S. Lestari, A. Akmaludin, and M. Badrul, “Implementasi Klasifikasi Naive Bayes Untuk Prediksi Kelayakan Pemberian Pinjaman Pada Koperasi Anugerah Bintang Cemerlang,” PROSISKO J. Pengemb. Ris. dan Obs. Sist. Komput., vol. 7, no. 1, pp. 8–16, 2020, doi: 10.30656/prosisko.v7i1.2129.
B. Purbayanto and T. N. Suharsono, “Analisis Sentimen Pengguna X terhadap Chatgpt dengan Algoritme Naive Bayes,” J. Telemat., vol. 18, no. 2, pp. 63–71, 2024, doi: 10.61769/telematika.v18i2.614.
M. R. Firdaus, N. Rahaningsih, and R. D. Dana, “Analisis Sentimen Aplikasi Shopee di Goole Play Store Menggunakan Klasifikasi Algoritma Naïve Bayes,” J. Inform. dan Rekayasa Perangkat Lunak, vol. 6, no. 1, pp. 228–237, 2024.
N. Pooja, M. Saputra, S. Aisyah, and P. Juanta, “Implementasi Data Mining Clustering Data Valuasi Ekspor Kertas Indonesia Menggunakan Algoritma K-Means,” J. Sist. Inf. dan Ilmu Komput. Prima(JUSIKOM PRIMA), vol. 5, no. 2, pp. 86–90, 2022, doi: 10.34012/jurnalsisteminformasidanilmukomputer.v5i2.2372.
A. E. Syaputra and Y. S. Eirlangga, “Prediksi Tingkat Kunjungan Pasien dengan Menggunakan Metode Monte Carlo,” J. Inf. dan Teknol., vol. 4, no. 2, pp. 97–102, 2022, doi: 10.37034/jidt.v4i2.202.
M. Y. Putra and D. I. Putri, “Pemanfaatan Algoritma Naïve Bayes dan K-Nearest Neighbor Untuk Klasifikasi Jurusan Siswa Kelas XI,” J. Tekno Kompak, vol. 16, no. 2, p. 176, 2022, doi: 10.33365/jtk.v16i2.2002.
Heliyanti Susana, “Penerapan Model Klasifikasi Metode Naive Bayes Terhadap Penggunaan Akses Internet,” J. Ris. Sist. Inf. dan Teknol. Inf., vol. 4, no. 1, pp. 1–8, 2022, doi: 10.52005/jursistekni.v4i1.96.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Implementasi Naïve Bayes untuk Memprediksi Tingkat Kunjungan Pelanggan Menggunakan Algoritma Naïve Bayes
ARTICLE HISTORY
Issue
Section
Copyright (c) 2025 Nazwa Adelia Putri, Zihan Maharani, Ilona Dwi Shelvani, Harly Okprana

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).