Prediksi Persediaan Obat Pada Apotek Menggunakan Algoritma Decision Tree
DOI:
https://doi.org/10.30865/klik.v4i4.1681Keywords:
Prediction; Medicine Stock; Decision Tree; Accuracy; Precision; Recall; F1-ScoreAbstract
A pharmacy is a place for buying and selling drugs and must have an adequate stock of drug supplies so that it can serve consumers in need. In some pharmacies there are problems related to drug supply. Often the drugs needed by the community are empty in stock, while the drugs that are less needed are stored in the warehouse. Therefore, this study aims to conduct a prediction model of drug supply so that it can meet consumer needs. This study uses drug inventory data at Kaligandu Pharmacy, the data has 2745 rows and 5 attributes consisting of "Item Name", "Unit", "Previous Stock", "Rill Stock", and "Restock". The method used in this case is the Decision Tree algorithm with Accuracy, Precision, Recall, and F1-Score evaluation methods to see which drugs are available and not available based on "Unit". The results showed that the Decision Tree algorithm obtained good results by using a data comparison of 80 to 20 resulting in an accuracy value of 98.71%. In addition, the resulting values of Precision, Recall, and F1-Score are not much different, namely 0.9872, 0.9872, and 0.9867. The 70 to 30 data comparison produces a smaller value but is not much different from the results of 80 to 20, namely the accuracy of 98.28%, Precision 0.9832, Recall 0.9828, and F1-Score 0.9804. with these results this research can be continued by implementing drug inventory prediction using Decision Tree into an application
Downloads
References
Aida Fitriyani, “Sistem Prediksi Aturan Stock Obat Dengan Metode Iterative Dichotomiser (ID3),” Journal of Information and Information Security (JIFORTY), vol. 4, no. 1, p. 12, Jun. 2021, doi: 10.29100/jipi.v4i1.781.
Winanda Delrinata, “Implementasi Algoritma ApriorinUntuk Menentukan Stok Obat,” Jurnal SISFOKOM (Sistem Informasi dan Komputer), 2020, doi: 10.32736/sisfokom.xx.xx.
N. Dwi Anggraeni and A. Octaviano, “Penerapan Data Mining Untuk Klasifikasi Persediaan Barang Menggunakan Metode K-Nearest Neighbor & C4.5 Dan Prediksi Persediaan Barang Menggunakan Metode Safety Stock & ROP (Studi Kasus?: PT. Macro Jaya Agung),” OKTAL?: Jurnal Ilmu Komputer dan Science , vol. 2, no. 7, 2023, [Online]. Available: https://journal.mediapublikasi.id/index.php/oktal
F. P. Dewanti, S. Setiyowati, and S. Harjanto, “Prediksi Persediaan Obat Untuk Proses Penjualan Menggunakan Metode Decision Tree Pada Apotek,” Jurnal Teknologi Informasi dan Komunikasi (TIKomSiN), vol. 10, no. 1, May 2022, doi: 10.30646/tikomsin.v10i1.604.
Henky Saputra, Pengelolaan Persediaan Obat . 2020.
K. Rosita Dewi and K. Farouq Mauladi, “Analisa Algoritma C4.5 untuk Prediksi Penjualan Obat Pertanian di Toko Dewi Sri,” 2020.
N. Setyadi Putri, “Penerapan Data MiningUntuk Prediksi Hasil Produksi Karet Menggunakan Algoritma Decision TreeC4.5,” Teknologipintar.org, vol. 2, 2022.
N. Wardani, Penerapan Data Mining Dalam Analytic CRM. Yayasan Kita Menulis, 2020.
G. Gustientiedina, M. H. Adiya, and Y. Desnelita, “Penerapan Algoritma K-Means Untuk Clustering Data Obat-Obatan,” Jurnal Nasional Teknologi dan Sistem Informasi, vol. 5, no. 1, pp. 17–24, Apr. 2019, doi: 10.25077/teknosi.v5i1.2019.17-24.
S. Ben Jabeur, A. Sadaaoui, A. Sghaier, and R. Aloui, “Machine learning models and cost-sensitive decision trees for bond rating prediction,” Journal of the Operational Research Society, vol. 71, no. 8, pp. 1161–1179, Aug. 2020, doi: 10.1080/01605682.2019.1581405.
R. Ridho, “Klasifikasi Diagnosis Penyakit Covid-19 Menggunakan Metode Decision Tree,” 2021. [Online]. Available: https://jurnal.umj.ac.id/index.php/just-it/index
A. M. Siregar and A. Fauzi, “Klasifikasi Kab Kota Provinsi Jawa Barat Berdasarkan Pendapatan Dari Sektor Pertanian Dengan Algoritma Decision Tree,” Faktor Exacta, vol. 13, no. 1, p. 1, Jun. 2020, doi: 10.30998/faktorexacta.v13i1.5542.
S. Suwartini, T. Hartati, Martanto, N. Rahaningsih, and G. Dwilestari, “Prediksi Perbaikan Jalan Nasional Dengan Menggunakan Algoritma Decision Tree,” KOPERTIP: Jurnal Ilmiah Manajemen Informatika dan Komputer, 2022.
D. Elisa Sinaga et al., “Kajian Ilmiah Informatika dan Komputer Analisis Data Mining Algoritma Decision Tree Pada Prediksi Persediaan Obat (Studi Kasus?: Apotek Franch Farma),” vol. 2, no. 4, pp. 123–131, 2022, [Online]. Available: https://djournals.com/klik
R. Latifah, E. Setia Wulandari, and dan Priadhana Edi Kreshna, “Model Decision Tree untuk Prediksi Jadwal Kerja menggunakan Scikit-Learn,” 2019.
Z. Muttaqin and E. Srihartini, “Penerapan Metode Regresi Linier Sederhana Untuk Prediksi Persediaan Obat Jenis Tablet,” Sistem Informasi |, vol. 9, no. 1, pp. 12–16, 2022.
A. Fikri and W. Verina, “PENERAPAN DATA MINING UNTUK PREDIKSI PENJUALAN ALAT MEDIS MENGGUNAKAN ALGORITMA C4.5 PT. MURNI INDAH SENTOSA Implementation Of Mining Data For Sales Prediction Of Medical Tools Using C4.5 Algorithm PT. Murni Indah Sentosa,” 70. InfoSys Journal, vol. 5, pp. 70–82, 2020.
T. Septiani, N. Koeswara, ) M Sukrisno Mardiyanto, ) Muhamad, and A. Ghani, “Penerapan Particle Swarm Optimization(PSO) Dalam Pemilihan Atribut Untuk Meningkatkan Akurasi Prediksi Diagnosis Penyakit Hepatitis Dengan Metode Naive Bayes,” Journal Speed-Sentra Penelitian Engineering dan Edukasi, vol. 12, 2020.
D. Nofriansyah and G. W. Nurcahyo, “Algoritma Data Mining Dan Pengujian,” 2019.
E. P. Orpa Krisda, E. Ripanti Faja, and Tursina, “Model Prediksi Awal Masa Studi Mahasiswa Menggunakan Algoritma Decision tree c4.5,” Jurnal Sistem dan Teknologi Informasi, vol. 7, 2019.
L. Qadrini, A. Seppewali, and A. Aina, “DECISION TREE DAN ADABOOST PADA KLASIFIKASI PENERIMA PROGRAM BANTUAN SOSIAL,” Jurnal Inovasi Penelitian, vol. 2, no. 7, 2021.
Q. Ren, H. zhang, D. Zhang, X. Zhao, L. Yan, and J. Rui, “A novel hybrid method of lithology identification based on k-means++ algorithm and fuzzy decision tree,” J Pet Sci Eng, vol. 208, Jan. 2022, doi: 10.1016/j.petrol.2021.109681.
D. Nike Aria Kurniawan, “Implementasi Metode Decision Tree pada Sistem Prediksi Status Gizi Balita,” 2023.
S. Sudianto, “Analisis Kinerja Algoritma Machine Learning Untuk Klasifikasi Emosi,” Building of Informatics, Technology and Science (BITS), vol. 4, no. 2, Sep. 2022, doi: 10.47065/bits.v4i2.2261.
N. Basuni and Amril Mutoi Siregar, “Comparison of the Accuracy of Drug User Classification Models Using Machine Learning Methods,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 7, no. 6, pp. 1348–1353, Dec. 2023, doi: 10.29207/resti.v7i6.5401.
B. P. Pratiwi, A. S. Handayani, and Sarjana, “Pengukuran Kinerja Sistem Kualitas Udara Dengan Teknologi WSN Menggunakan Confusion Matrix,” JURNAL INFORMATIKA UPGRIS, vol. 6, no. 2, 2020.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Prediksi Persediaan Obat Pada Apotek Menggunakan Algoritma Decision Tree
ARTICLE HISTORY
Issue
Section
Copyright (c) 2024 Sinta Amanda Pratiwi, Ahmad Fauzi, Santi Arum Puspita Lestari, Yana Cahyana

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).