Implementasi K-Nearest Neighbor Untuk Klasifikasi Jenis Kelamin Berdasarkan Analisis Citra Wajah
DOI:
https://doi.org/10.30865/klik.v3i6.827Keywords:
K-Nearest Neighbor; Face; Classification; Image; Image ProcessingAbstract
The face or face is part of the head, in humans it covers the area from forehead to chin, including hair, forehead, eyebrows, eyes, nose, cheeks, mouth, lips, teeth, skin and chin. The face is used for facial expressions, appearance and identity. Face detection is a stage for personal identification, monitoring systems, criminal law, human-computer interaction. The ever-evolving technological era demands the development of the world of technology to find new, more accurate and fast technological knowledge as well as many problems in the field of technological security and criminal law that require identification of facial classifications in solving a problem. The facial recognition system requires a feature from an image to be recognized then this feature will be matched with another image feature. the process requires a feature extraction method or features and K-Nearest classification. The purpose of this research is to get the best level of accuracy in the facial image classification process in determining a person's gender. The method in this study was carried out in two phases, namely the training phase and the testing phase. In the training phase, the steps taken aim to obtain a model based on a subset of images called training images. The initial step of research is to prepare image data sets to be analyzed. The image dataset used is 20 facial images and then takes 10 images. Based on the results of research conducted on facial images based on color and shape using the K-Nearest Neighbor method, it can be concluded that this method is included in an excellent algorithm for application to facial image classification based on color and shape with an accuracy value of 96%, so that the determination gender based on facial objects using data extracted from color and shape and using the K-Nearest Neighbor classification method according to the actual image data.
Downloads
References
R. A. Asmara, B. S. Andjani, U. D. Rosiani, and P. Choirina, “Klasifikasi Jenis Kelamin Pada Citra Wajah Menggunakan Metode Naive Bayes,” J. Inform. Polinema, vol. 4, no. 3, p. 212, 2018, doi: 10.33795/jip.v4i3.209.
D. R. H. Putra, F. Marisa, and I. D. Wijaya, “Identifikasi Wajah Berbasis Segmentasi Warna Kulit Wajah Menggunakan Naive Bayes Classifier,” J. Teknol. Inf., vol. 9, no. 2, pp. 99–106, 2018.
E. D. Sikumbang, “Penerapan Data Mining Penjualan Sepatu Menggunakan Metode Algoritma Apriori,” J. Tek. Komput. AMIK BSI, vol. Vol 4, No., no. September, pp. 1–4, 2018.
D. Hardiyanto and D. Anggun Sartika, “Optimalisasi Metode Deteksi Wajah berbasis Pengolahan Citra untuk Aplikasi Identifikasi Wajah pada Presensi Digital,” Setrum Sist. Kendali-Tenaga-elektronika-telekomunikasi-komputer, vol. 7, no. 1, p. 107, 2018, doi: 10.36055/setrum.v7i1.3367.
A. Budi, S. Suma’inna, and H. Maulana, “Pengenalan Citra Wajah Sebagai Identifier Menggunakan Metode Principal Component Analysis (PCA),” J. Tek. Inform., vol. 9, no. 2, pp. 166–175, 2018, doi: 10.15408/jti.v9i2.5608.
I. K. S. Widiakumara, I. K. G. D. Putra, and K. S. Wibawa, “Aplikasi Identifikasi Wajah Berbasis Android,” Lontar Komput. J. Ilm. Teknol. Inf., vol. 8, no. 3, p. 200, 2017, doi: 10.24843/lkjiti.2017.v08.i03.p06.
N. Yelliy N, “Pengolahan Citra Digital Perbandingan Metode Histogram Equalization Dan Spesification Pada Citra Abu-Abu,” J-Icon, vol. 7, no. 1, pp. 87–95, 2019.
R. Andrian, S. Anwar, M. A. Muhammad, and A. Junaidi, “Identifikasi Kupu-Kupu Menggunakan Ekstraksi Fitur Deteksi Tepi (Edge Detection) dan Klasifikasi K-Nearest Neighbor (KNN),” J. Tek. Inform. dan Sist. Inf., vol. 5, no. 2, pp. 234–243, 2019, doi: 10.28932/jutisi.v5i2.1744.
D. P. Utomo, “Analisis Komparasi Metode Klasifikasi Data Mining dan Reduksi Atribut Pada Data Set Penyakit Jantung,” J. MEDIA Inform. BUDIDARMA, vol. 4, no. April, pp. 437–444, 2020, doi: 10.30865/mib.v4i2.2080.
N. Wijaya and A. Ridwan, “Klasifikasi Jenis Buah Apel Dengan Metode K-Nearest Neighbors,” Sisfokom, vol. 08, no. 1, pp. 74–78, 2019.
H. Muchtar and F. Said, “Sistem Identifikasi Plat Nomor Kendaraan Menggunakan Metode Robert Filter dan Framing Image Berbasis Pengolahan Citra Digital,” Resist. (elektRonika kEndali Telekomun. tenaga List. kOmputeR), vol. 2, no. 2, p. 105, 2019, doi: 10.24853/resistor.2.2.105-112.
T. Y. Prahudaya and A. Harjoko, “Metode Klasifikasi Mutu Jambu Biji Menggunakan Knn Berdasarkan Fitur Warna Dan Tekstur,” Jurnal Teknosains, vol. 6, no. 2. p. 113, 2017, doi: 10.22146/teknosains.26972.
Johan Wahyudi and Ihdahubbi Maulida, “Pengenalan Pola Citra Kain Tradisional Menggunakan Glcm Dan Knn,” J. Teknol. Inf. Univ. Lambung Mangkurat, vol. 4, no. 2, pp. 43–48, 2019, doi: 10.20527/jtiulm.v4i2.37.
A. P. W. Riri Nada Devita, Heru Wahyu Herwanto, “Perbandingan kinerja metode Naive Bayes dan KNN untuk klasifikasi artikel berbahasa indonesia,” J. Teknol. Inf. dan Ilmu Komput., vol. 5, no. 4, pp. 427–434, 2018, doi: 10.25126/jtiik.201854773.
R. Rahmadianto, E. Mulyanto, and T. Sutojo, “Implementasi Pengolahan Citra dan Klasifikasi K-Nearest Neighbor untuk Mendeteksi Kualitas Telur Ayam,” J. VOI (Voice Informatics), vol. 8, no. 1, pp. 45–54, 2019.
B. Salsabila, Alifa, Puteri, D. Yunita, Rika, and C. Rozikin, “Identifikasi Citra Jenis Bunga menggunakan Algoritma KNN dengan Ekstrasi Warna HSV dan Tekstur GLCM,” Technomedia J., vol. 6, no. 1, pp. 124–137, 2021, doi: 10.33050/tmj.v6i1.1667.
D. P. and A. B. S. Pamungkas, “IMPLEMENTASI EKSTRASI FITUR DAN K-NEAREST NEIGHTBOR UNTUK IDENTIFIKASI WAJAH PERSONAL,” Https://Medium.Com/, vol. 3, no. 2, pp. 187–193, 2018, [Online]. Available: https://medium.com/@arifwicaksanaa/pengertian-use-case-a7e576e1b6bf.
N. Nafiah, “Klasifikasi Kematangan Buah Mangga Berdasarkan Citra HSV dengan KNN,” J. Elektron. List. dan Teknol. Inf. Terap., vol. 1, no. 2, pp. 1–4, 2019, [Online]. Available: https://ojs.politeknikjambi.ac.id/elti.
D. A. Nasution, H. H. Khotimah, and N. Chamidah, “Perbandingan Normalisasi Data untuk Klasifikasi Wine Menggunakan Algoritma K-NN,” Comput. Eng. Sci. Syst. J., vol. 4, no. 1, p. 78, 2019, doi: 10.24114/cess.v4i1.11458.
T. Imandasari, E. Irawan, A. P. Windarto, and A. Wanto, “Algoritma Naive Bayes Dalam Klasifikasi Lokasi Pembangunan Sumber Air,” Pros. Semin. Nas. Ris. Inf. Sci., vol. 1, no. September, p. 750, 2019, doi: 10.30645/senaris.v1i0.81.
R. Evan Purnama Ramdan, Inti Mulyo Arti, “Identifikasi Dan Uji Virulensi Penyakit Antraknosa Pada Pasca panen Buah Cabai,” J. Pertan. Presisi (Journal Precis. Agric., vol. 3, no. 1, pp. 67–76, 2019, [Online]. Available: https://ejournal.gunadarma.ac.id/index.php/jpp/article/view/1976.
A. Ciputra, D. R. I. M. Setiadi, E. H. Rachmawanto, and A. Susanto, “Klasifikasi Tingkat Kematangan Buah Apel Manalagi Dengan Algoritma Naive Bayes Dan Ekstraksi Fitur Citra Digital,” Simetris J. Tek. Mesin, Elektro dan Ilmu Komput., vol. 9, no. 1, pp. 465–472, 2018, doi: 10.24176/simet.v9i1.2000.
Maulana Fansyuri and O. Hariansyah, “Pengenalan Objek Bunga dengan Ekstraksi Fitur Warna dan Bentuk Menggunakan Metode Morfologi dan Naïve Bayes,” J. Sist. dan Inform., vol. 15, no. 1, pp. 70–80, 2020, doi: 10.30864/jsi.v15i1.338.
M. H. Rifqo and A. Wijaya, “Implementasi Algoritma Naive Bayes Dalam Penentuan Pemberian Kredit,” J. Pseudocode, vol. 4, no. 2, pp. 120–128, 2017, doi: 10.33369/pseudocode.4.2.120-128.
R. A. Syawalia, S. Rasyad, and D. A. Pratama, “Implementasi Fuzzy Logic pada Sistem Sortir Otomatis Alat Penghitung Jumlah Buah Apel,” J. Tek. Elektro Dan Vokasional, vol. 06, no. 02, pp. 421–432, 2020.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Implementasi K-Nearest Neighbor Untuk Klasifikasi Jenis Kelamin Berdasarkan Analisis Citra Wajah
ARTICLE HISTORY
Issue
Section
Copyright (c) 2023 Maulana Fansyuri, Devi Yunita

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).