Analisis Sentimen Ulasan Pengguna Aplikasi Netflix Pada Google Play Menggunakan Algoritma Naïve Bayes
DOI:
https://doi.org/10.30865/klik.v4i6.1964Keywords:
Sentiment Analysis; Naïve Bayes; RapidMiner; Google Play StoreAbstract
The rapid development of information technology has advanced rapidly, including advancements in film technology. In this modern era, watching movies no longer requires going to the cinema, as there are applications available to watch movies anytime and anywhere. One popular application for watching movies is Netflix, a widely used streaming platform for films and series. Netflix also ranks 10th in terms of access in Indonesia. This study focuses on identifying user satisfaction levels with the Netflix application based on reviews on the Google Play Store. The research aims to analyze user review sentiment of an application available on Google Play, namely Netflix. These reviews will be used to gauge user satisfaction with the Netflix application. Researchers obtained these reviews using a Python web scraper with a total of 1000 unprocessed data points. After processing these 1000 data points by removing duplicates and symbols, researchers obtained 893 data points ready for sentiment analysis using RapidMiner. Out of the 893 data points, researchers manually labeled 635 data points, while 258 data points were labeled automatically using machine learning, namely Naive Bayes. Researchers also created a confusion matrix to determine the accuracy level of the algorithm used in this study. The accuracy result of the confusion matrix obtained by researchers in this study is 93.39%. The positive class precision value of 85.52% indicates that most positive reviews were identified accurately, while the negative class precision value of 100% demonstrates excellent capability in identifying negative reviews. In conclusion, the Netflix application receives diverse responses from users, and the algorithm used effectively identifies reviews accurately
Downloads
References
A. Fricticarani, A. Hayati, R. R, I. Hoirunisa, and G. M. Rosdalina, “Strategi Pendidikan Untuk Sukses Di Era Teknologi 5.0,” J. Inov. Pendidik. dan Teknol. Inf., vol. 4, no. 1, pp. 56–68, 2023, doi: 10.52060/pti.v4i1.1173.
R. D. Himawan and E. Eliyani, “Perbandingan Akurasi Analisis Sentimen Tweet terhadap Pemerintah Provinsi DKI Jakarta di Masa Pandemi,” J. Edukasi dan Penelit. Inform., vol. 7, no. 1, p. 58, 2021, doi: 10.26418/jp.v7i1.41728.
N. Anas and S. Sapri, “Komunikasi Antara Kognitif dan Kemampuan Berbahasa,” EUNOIA (Jurnal Pendidik. Bhs. Indones., vol. 1, no. 1, p. 1, 2022, doi: 10.30821/eunoia.v1i1.997.
M. Fudhail Ferio Supeli and S. Setiaji, “Klasifikasi Sentimen Positif Dan Negatif Pada Aplikasi Vidio Dengan Algoritma K-Nearest Neighbor,” Indones. J. Comput. Sci., vol. 2, no. 1, pp. 7–15, 2023, doi: 10.31294/ijcs.v2i1.1874.
E. Lestari and O. R. C. Soesanto, “PREDICTING FACTORS THAT INFLUENCE ATTITUDE TO USE AND ITS IMPLICATIONS ON CONTINUANCE INTENTION TO USE SVOD: STUDY ON NETFLIX USERS OF INDONESIA,” DeReMa (Development Res. Manag. J. Manaj., vol. 15, no. 2, p. 183, 2020, doi: 10.19166/derema.v15i2.2541.
P. Adi Cakranegara, Y. Budiasih, H. Tannady, and Y. Totok Suyoto, “Analysis Of The Effect Of Perceived Value And Brand Image On Netflix Service Purchase Decisions Analisis Pengaruh Perceived Value Dan Brand Image Terhadap Purchase Decision Layanan Netflix,” Manag. Stud. Entrep. J., vol. 3, no. 5, pp. 3238–3247, 2022, [Online]. Available: http://journal.yrpipku.com/index.php/msej.
A. Zy and Wahyu Hadikristanto, “Implementasi Algoritma Metode Naive Bayes dan Support Vector Machine Tentang Pembobolan dan Kebocoran Data di Twitter,” Bull. Inf. Technol., vol. 4, no. 1, pp. 49–56, Mar. 2023, doi: 10.47065/bit.v4i1.493.
H. Setiawan and I. Zufria, “Analisis Sentimen Pembatalan Indonesia Sebagai Tuan Rumah Piala Dunia FIFA U-20 Menggunakan Naïve Bayes,” J. Media Inform. Budidarma, vol. 7, no. 3, pp. 1003–1012, 2023, doi: 10.30865/mib.v7i3.6144.
F. Sidik, I. Suhada, A. H. Anwar, and F. N. Hasan, “Analisis Sentimen Terhadap Pembelajaran Daring Dengan Algoritma Naive Bayes Classifier,” J. Linguist. Komputasional, vol. 5, no. 1, p. 34, 2022, doi: 10.26418/jlk.v5i1.79.
A. Yahyadi and F. Latifah, “Analisis Sentimen Twitter TerhadapKebijakan Ppkm Di Tengah Pandemi Covid-19Menggunakan Mode Lstm,” J. Inf. Syst. Applied, Manag. Account. Res., vol. 6, no. 2, pp. 464–470, 2022, doi: 10.52362/jisamar.v6i2.791.
M. A. Amrustian, W. Widayat, and A. M. Wirawan, “Analisis Sentimen Evaluasi Terhadap Pengajaran Dosen di Perguruan Tinggi Menggunakan Metode LSTM,” J. MEDIA Inform. BUDIDARMA, vol. 6, no. 1, p. 535, Jan. 2022, doi: 10.30865/mib.v6i1.3527.
F. N. Hasan and M. Dwijayanti, “Analisis Sentimen Ulasan Pelanggan Terhadap Layanan Grab Indonesia Menggunakan Multinominal Naïve Bayes Classifier,” J. Linguist. Komputasional, vol. 4, no. 2, pp. 52–58, 2021, doi: https://doi.org/10.26418/jlk.v4i2.61.
A. N. Indraini and I. Ernawati, “Analisis Sentimen Terhadap Pembelajaran Daring Di Indonesia Menggunakan Support Vector Machine (SVM),” J. Ilm. FIFO, vol. 14, no. 1, p. 68, 2022, doi: 10.22441/fifo.2022.v14i1.007.
S. Y. Nursyi’ah, A. Erfina, and C. Warman, “Analisis Sentimen Pembelajaran Daring Pada Masa Pandemi Covid-19 Di Twitter Menggunakan Algoritma Naïve Bayes,” J. Media Inform. Budidarma, pp. 117–123, 2021.
A. R. Abdillah and F. N. Hasan, “Analisis Sentimen Terhadap Kandidat Calon Presiden Berdasarkan Tweets Di Sosial Media Menggunakan Naive Bayes Classifier,” Smatika J., vol. 13, no. 01, pp. 117–130, 2023, doi: 10.32664/smatika.v13i01.750.
H. Z. Muflih, A. R. Abdillah, and F. N. Hasan, “Analisis Sentimen Ulasan Pengguna Aplikasi Ajaib Menggunakan Metode Naïve Bayes,” KLIK Kaji. Ilm. Inform. dan Komput., vol. 4, no. 3, pp. 1613–1621, 2023, doi: 10.30865/klik.v4i3.1303.
D. Wijaya, R. A. Saputra, and F. Irwiensyah, “Analisis Sentimen Ulasan Aplikasi Samsat Digital Nasional Pada Google Playstore Menggunakan Algoritma Naïve Bayes,” KLIK Kaji. Ilm. Inform. dan Komput., vol. 4, no. 4, pp. 2369–2380, 2024, doi: 10.30865/klik.v4i4.1738.
R. Wahyudi and G. Kusumawardana, “Analisis Sentimen pada Aplikasi Grab di Google Play Store Menggunakan Support Vector Machine,” J. Inform., vol. 8, no. 2, pp. 200–207, 2021, doi: 10.31294/ji.v8i2.9681.
A. Meiriza, E. Ali, Rahmiati, and Agustin, “Perbandingan Algoritma K-Means dan K-Medoids untuk Pengelompokan Program BPJS Ketenagakerjaan,” Indones. J. Comput. Sci., vol. 12, no. 2, pp. 714–728, 2023, doi: 10.33022/ijcs.v12i2.3184.
M. W. A. Putra, Susanti, Erlin, and Herwin, “Analisis Sentimen Dompet Elektronik Pada Twitter Menggunakan Metode Naïve Bayes Classifier,” IT J. Res. Dev., vol. 5, no. 1, pp. 72–86, 2020, doi: 10.25299/itjrd.2020.vol5(1).5159.
D. Oktavia, Y. R. Ramadahan, and M. Minarto, “Analisis Sentimen Terhadap Penerapan Sistem E-Tilang Pada Media Sosial Twitter Menggunakan Algoritma Support Vector Machine (SVM),” KLIK Kaji. Ilm. Inform. dan Komput., vol. 4, no. 1, pp. 407–417, 2023, doi: 10.30865/klik.v4i1.1040.
M. Arifiansyah Ayub, “Analisis Topik Ekonomi Dengan Algoritma K-Means Pada Media Online Era Pandemi Covid-19 Di Sulawesi Tenggara,” JIKO (Jurnal Inform. dan Komputer), vol. 4, no. 2, pp. 133–138, 2021, doi: 10.33387/jiko.v4i2.3235.
A. I. Tanggraeni and M. N. N. Sitokdana, “Analisis Sentimen Aplikasi E-Government pada Google Play Menggunakan Algoritma Naïve Bayes,” JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 9, no. 2, pp. 785–795, 2022, doi: 10.35957/jatisi.v9i2.1835.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Analisis Sentimen Ulasan Pengguna Aplikasi Netflix Pada Google Play Menggunakan Algoritma Naïve Bayes
ARTICLE HISTORY
Issue
Section
Copyright (c) 2024 Ananda Bagas Pranata, Allif Rizki Abdillah, Faldy Irwiensyah
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).