Klasifikasi Sentimen SVM Dengan Dataset yang Kecil Pada Kasus Kaesang Sebagai Ketua Umum PSI


Authors

  • Yoga El Saputra Universitas Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia
  • Surya Agustian Universitas Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia
  • Yusra Yusra Universitas Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia
  • Siti Ramadhani Universitas Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia

DOI:

https://doi.org/10.30865/klik.v4i6.1944

Keywords:

SVM; TF-IDF; Klasifikasi Sentimen; Machine Learning; PSI

Abstract

Social media has become the main platform for the public to express views and opinions on various events, including the appointment of Kaesang Pangarep as General Chair of the Indonesian Solidarity Party (PSI). This research aims to classify public sentiment towards the appointment using the Support Vector Machine (SVM) method with the Term Frequency-Inverse Document Frequency (TF-IDF) approach. Data was collected from Twitter using the keyword "Kaesang PSI" as well as external data on topics related to Covid-19. In the kaeasang data, 300 data were taken with each label (positive, neutral, negative) to get 100 tweets and added external data of 900 data with each label (positive, neutral, negative) to get 300 tweets. After the text preprocessing process which includes case folding, stopword removal, and stemming. The model was tested using a confusion matrix to evaluate performance based on accuracy, precision, recall and F1 Score metrics. The results show that the SVM model with TF-IDF has an F1 Score of 0.53, accuracy of 0.62, precision of 0.52, and recall of 0.57. Adding external data related to Covid-19 to the TF-IDF feature has been proven to significantly improve model performance. In conclusion, the SVM method with TF-IDF is effective in analyzing sentiment on social media even with small datasets.

Downloads

Download data is not yet available.

References

M. Apriliansyah, “Dinamika Partisipatif Media Dan Jaringan Sosial: Analisis Kasus Isu Prabowo Dalam Pemilu 2024,” J. Sekr. Adm., vol. 21, no. 2, hal. 81–95, 2023.

“Profil PSI yang Angkat Kaesang Pangarep Jadi Ketua Umum Halaman all - Kompas.com.” https://www.kompas.com/tren/read/2023/09/27/103000465/profil-psi-yang-angkat-kaesang-pangarep-jadi-ketua-umum-?page=all (diakses Mei 21, 2024).

“Kaesang Jadi Ketum PSI Dinilai Semakin Merusak Kaderisasi dan Tak Beri Teladan Halaman all - Kompas.com.” https://nasional.kompas.com/read/2023/09/26/14552721/kaesang-jadi-ketum-psi-dinilai-semakin-merusak-kaderisasi-dan-tak-beri?page=all (diakses Mei 21, 2024).

“Suara Anak Muda dan Pengaruh Politik Gembira ala PSI - Partai Solidaritas Indonesia.” https://psi.id/suara-anak-muda-dan-pengaruh-politik-gembira-ala-psi/ (diakses Mei 21, 2024).

S. Suryono, E. Utami, dan E. T. Luthfi, “Klasifikasi Sentimen Pada Twitter Dengan Naive Bayes Classifier,” Angkasa J. Ilm. Bid. Teknol., vol. 10, no. 1, hal. 89, 2018, doi: 10.28989/angkasa.v10i1.218.

E. Retnoningsih dan R. Pramudita, “Mengenal Machine Learning Dengan Teknik Supervised Dan Unsupervised Learning Menggunakan Python,” Bina Insa. Ict J., vol. 7, no. 2, hal. 156, 2020, doi: 10.51211/biict.v7i2.1422.

S. Huang, C. A. I. Nianguang, P. Penzuti Pacheco, S. Narandes, Y. Wang, dan X. U. Wayne, “Applications of support vector machine (SVM) learning in cancer genomics,” Cancer Genomics and Proteomics, vol. 15, no. 1, hal. 41–51, 2018, doi: 10.21873/cgp.20063.

M. I. Petiwi, A. Triayudi, dan I. D. Sholihati, “Analisis Sentimen Gofood Berdasarkan Twitter Menggunakan Metode Naïve Bayes dan Support Vector Machine,” J. Media Inform. Budidarma, vol. 6, no. 1, hal. 542, 2022, doi: 10.30865/mib.v6i1.3530.

A. Baita, Y. Pristyanto, dan N. Cahyono, “Analisis Sentimen Mengenai Vaksin Sinovac Menggunakan Algoritma Support Vector Machine (SVM) dan K-Nearest Neighbor (KNN),” Inf. Syst. J., vol. 4, no. 2, hal. 42–46, 2021.

M. Sahbuddin dan S. Agustian, “Support Vector Machine Method with Word2vec for Covid-19 Vaccine Sentiment Classification on Twitter,” J. Informatics Telecommun. Eng., vol. 6, no. 1, hal. 288–297, 2022, doi: 10.31289/jite.v6i1.7534.

R. Wahyudi dan G. Kusumawardana, “Analisis Sentimen pada Aplikasi Grab di Google Play Store Menggunakan Support Vector Machine,” J. Inform., vol. 8, no. 2, hal. 200–207, 2021, doi: 10.31294/ji.v8i2.9681.

I. Muslim Karo Karo et al., “Analisis Sentimen Ulasan Aplikasi Info BMKG di Google Play Menggunakan TF-IDF dan Support Vector Machine,” J. Inf. Syst. Res., vol. 4, no. 4, hal. 1423–1430, 2023, doi: 10.47065/josh.v4i4.3943.

S. Khairunnisa, A. Adiwijaya, dan S. Al Faraby, “Pengaruh Text Preprocessing terhadap Analisis Sentimen Komentar Masyarakat pada Media Sosial Twitter (Studi Kasus Pandemi COVID-19),” J. Media Inform. Budidarma, vol. 5, no. 2, hal. 406, 2021, doi: 10.30865/mib.v5i2.2835.

N. Satya Marga, A. Rahman Isnain, dan D. Alita, “Sentimen Analisis Tentang Kebijakan Pemerintah Terhadap Kasus Corona Menggunakan Metode Naive Bayes,” J. Inform. dan Rekayasa Perangkat Lunak, vol. 453, no. 4, hal. 453–463, 2021.

D. Darwis, E. S. Pratiwi, dan A. F. O. Pasaribu, “Penerapan Algoritma Svm Untuk Analisis Sentimen Pada Data Twitter Komisi Pemberantasan Korupsi Republik Indonesia,” Edutic - Sci. J. Informatics Educ., vol. 7, no. 1, hal. 1–11, 2020, doi: 10.21107/edutic.v7i1.8779.

N. Charibaldi, A. Harfiani, dan O. S. Simanjuntak, “Bayes Classifier dan K-Nearest Neighbor untuk Analisis Sentimen,” vol. 9, no. 1, 2024.

H. Syah dan A. Witanti, “Analisis Sentimen Masyarakat Terhadap Vaksinasi Covid-19 Pada Media Sosial Twitter Menggunakan Algoritma Support Vector Machine (Svm),” J. Sist. Inf. dan Inform., vol. 5, no. 1, hal. 59–67, 2022, doi: 10.47080/simika.v5i1.1411.

A. N. Ulfah dan M. K. Anam, “Analisis Sentimen Hate Speech Pada Portal Berita Online Menggunakan Support Vector Machine (SVM),” JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 7, no. 1, hal. 1–10, 2020, doi: 10.35957/jatisi.v7i1.196.

W. Athira Luqyana, I. Cholissodin, dan R. S. Perdana, “Analisis Sentimen Cyberbullying pada Komentar Instagram dengan Metode Klasifikasi Support Vector Machine,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 2, no. 11, hal. 4704–4713, 2018.

A. Bhattacharjee et al., “BanglaBERT: Language Model Pretraining and Benchmarks for Low-Resource Language Understanding Evaluation in Bangla,” in Findings of the Association for Computational Linguistics: NAACL 2022 - Findings, 2022, hal. 1318–1327, doi: 10.18653/v1/2022.findings-naacl.98.

H. Wang, W. Zhou, dan Y. Shao, “A new fast ADMM for kernelless SVM classifier with truncated fraction loss,” Knowledge-Based Syst., vol. 283, hal. 111214, Jan 2023, doi: 10.1016/j.knosys.2023.111214.

M. Arya dan C. S. S. Bedi, “Survei tentang SVM dan aplikasinya dalam klasifikasi citra,” 2018.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Klasifikasi Sentimen SVM Dengan Dataset yang Kecil Pada Kasus Kaesang Sebagai Ketua Umum PSI

Dimensions Badge

ARTICLE HISTORY


Published: 2024-06-25
Abstract View: 119 times
PDF Download: 57 times

Issue

Section

Articles