Analisis Sentimen Pengguna Terhadap Kinerja Sistem Transportasi Umum Jakarta Menggunakan Algoritma Naive Bayes
DOI:
https://doi.org/10.30865/klik.v4i6.1936Keywords:
Sentiment Analysis; Naïve Bayes Algorithm; Public Transportation; Transjakarta; Jaklingko Fast MinerAbstract
This study uses the Naive Bayes algorithm to analyze netizen sentiment regarding public transportation in Jakarta. In the past, Jakarta's public transportation system was dominated by private operators, including buses, angkot (minibuses), and taxis. However, various challenges arose, such as lack of coordination, inconsistent service quality, safety issues, and inadequate coverage. To improve the quality and availability of public transportation, local or national governments have intervened by taking over public transportation services or imposing stricter regulations on private operators. Significant investments have been made in developing public transportation modes such as TransJakarta (bus rapid transit), KRL Commuter Line (electric train), MRT (Mass Rapid Transit), Jaklingko, and other public transport services. This study aims to analyze the benefits of public transportation, which has largely been taken over by the government, to minimize existing shortcomings. The research focuses on analyzing the differing opinions spread across various social media platforms. Data was collected from social media platforms such as YouTube and X. A total of 987 data points were used in this study, with 612 positive and 375 negative data points. After conducting the research, an accuracy of 94.22% was achieved. The analysis revealed significant variations in sentiment among netizens regarding public transportation in Jakarta. Some groups of netizens have begun to feel positive effects from the current integration of public transportation, but there are still execution shortcomings. The analysis also identified key factors influencing differing opinions, such as user areas, the uneven distribution of drivers with good personal qualities, and the economic conditions of the community. Consequently, this study contributes to sentiment analysis and natural language processing by applying problem-solving procedures to classify netizen comments on various platforms. The results of this study indicate that the Naive Bayes algorithm can be used to classify netizen sentiment about public transportation in Jakarta with a high level of accuracy. These findings can be useful for the government and Jakarta residents in finding solutions to these issues. Thus, this study can serve as a basis for a more comprehensive understanding of the government's response to public transportation issues in Jakarta.
Downloads
References
A. D. Nurlukman et al., “IMPLEMENTASI SMART ENVIRONMENT CITY DALAM TATA KELOLA LINGKUNGAN DI KOTA TANGERANG,” vol. 9, no. November, pp. 769–784, 2023.
B. D. Forino et al., “PERSEPSI PENGGUNA TRANSPORTASI UMUM DI JABODETABEK TERHADAP INTEGRASI TARIF PT JAKLINGKO INDONESIA,” vol. 6, no. 1, pp. 71–84, 2023.
L. A. Pramesti and N. Pratiwi, “Analisis Sentimen Twitter Terhadap Program MBKM Menggunakan Decision Tree dan Support Vector Machine,” vol. 4, no. 4, 2023, doi: 10.47065/josh.v4i4.3807.
E. Dwianto and M. Sadikin, “Analisis Sentimen Transportasi Online pada Twitter Menggunakan Metode Klasifikasi Naïve Bayes dan Support Vector Machine,” Format J. Ilm. Tek. Inform., vol. 10, no. 1, p. 94, 2021, doi: 10.22441/format.2021.v10.i1.009.
I. Iwandini, A. Triayudi, and G. Soepriyono, “Analisa Sentimen Pengguna Transportasi Jakarta Terhadap Transjakarta Menggunakan Metode Naives Bayes dan K-Nearest Neighbor,” J. Inf. Syst. Res., vol. 4, no. 2, pp. 543–550, 2023, doi: 10.47065/josh.v4i2.2937.
N. T. Romadloni, I. Santoso, S. Budilaksono, M. I. Komputer, and C. Folding, “PERBANDINGAN METODE NAIVE BAYES , KNN DAN DECISION TREE TERHADAP ANALISIS SENTIMEN TRANSPORTASI KRL,” vol. 3, no. 2, pp. 1–9, 2019.
A. I. Tanggraeni and M. N. N. Sitokdana, “Analisis Sentimen Aplikasi E-Government pada Google Play Menggunakan Algoritma Naïve Bayes,” JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 9, no. 2, pp. 785–795, 2022, doi: 10.35957/jatisi.v9i2.1835.
F. N. Hasan and M. Dwijayanti, “Analisis Sentimen Ulasan Pelanggan Terhadap Layanan Grab Indonesia Menggunakan Multinominal Naïve Bayes Classifier,” vol. 4, no. 2, pp. 52–58, 2021.
J. Budiarto, “Identifikasi Kebutuhan Masyarakat Nusa Tenggara Barat pada Pandemi Covid-19 di Media Sosial dengan Metode Crawling (Requirements Identification for NTB People in pandemic covid-19 at Social Media Using Crawling Method),” vol. 2, no. 4, pp. 244–250, 2021.
E. Kurnianto and D. Febriawan, “Analisis Sentimen Perbedaan Pendapat Netizen Indonesia Terhadap Penutupan Tiktok Shop Menggunakan Algoritma Naïve Bayes,” J. Sist. Komput. dan Inform., vol. 5, no. 2, pp. 404–414, 2023, doi: 10.30865/json.v5i2.7170.
A. Aziz, “Analisis Sentimen Identifikasi Opini Terhadap Produk, Layanan dan Kebijakan Perusahaan Menggunakan Algoritma TF-IDF dan SentiStrength,” J. Sains Komput. Inform. (J-SAKTI, vol. 6, no. 1, p. 115, 2022.
A. Puteri et al., “Identifikasi Citra Jenis Bunga menggunakan Algoritma KNN dengan Ekstrasi Warna HSV dan Tekstur GLCM,” vol. 6, no. 1, pp. 124–137, 2021.
N. R. Fadhila, T. Sutarti, M. Patende, G. Yudha, and D. D. Saputra, “Implementasi Machine Learning Untuk Klasifikasi Narasi Informative dan Non-Informative Pada Media Sosial Twitter TMC Polda Metro Jaya Menggunakan Naïve Bayes Classifier,” vol. 1, pp. 11–17, 2023.
G. F. Akbar and E. Sinduningrum, “CESS Analisis Sentimen Netizen Terhadap Polusi Udara di DKI Jakarta Analysis of Netizen Sentiment Towards Air Pollution in DKI Jakarta,” vol. 9, no. 1, pp. 276–287, 2024.
S. Yogi Yunefri, Yogi Ersan Fadrial, “CHATBOT PADA SMART COOPERATIVE ORIENTED PROBLEM MENGGUNAKAN NATURAL LANGUAGE PROCESSING DAN NAIVE BAYES CLASSIFIER,” vol. 4, pp. 131–141, 2021.
RAVI SHAH, Guide to Tokenizers and Processing. 2022.
O. I. Gifari, M. Adha, I. R. Hendrawan, F. Freddy, and S. Durrand, “Analisis Sentimen Review Film Menggunakan TF-IDF dan Support Vector Machine,” vol. 2, no. 1, pp. 36–40, 2022.
B. K. dan M. Luca, Packt Publishing, Limited, Packt Publishing. 2022.
F. Sidik, I. Suhada, A. H. Anwar, and F. N. Hasan, “Analisis Sentimen Terhadap Pembelajaran Daring dengan Algoritma Naïve Bayes Classifier,” vol. 5, no. 1, pp. 34–43, 2022.
T. A. Sundara, S. Ekaputri, and S. Sotar, “Naïve Bayes Classifier untuk Analisis Sentimen Isu Radikalisme,” Pros. SISFOTEK, vol. 4, no. 1, pp. 93–98, 2020.
V. Alpiana, A. Salam, F. Alzami, I. Rizqa, and D. Aqmala, “Analisis Topic-Modelling Menggunakan Latent Dirichlet Allocation ( LDA ) Pada Ulasan Sosial Media Youtube,” vol. 8, pp. 332–341, 2024, doi: 10.30865/mib.v8i1.7127.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Analisis Sentimen Pengguna Terhadap Kinerja Sistem Transportasi Umum Jakarta Menggunakan Algoritma Naive Bayes
ARTICLE HISTORY
Issue
Section
Copyright (c) 2024 Muhammad Imam Santoso, Ahmad Rizal Dzikrillah
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).