Optimasi Algoritma C4.5 Menggunakan Metode Forward Selection Dan Stratified Sampling Untuk Prediksi Kelayakan Mahasiswa Penerima Beasiswa
DOI:
https://doi.org/10.30865/klik.v4i6.1933Keywords:
Data Mining; Stratified Sampling; Forward Selesction; Algorithm C4.5 Optimation; ScholarshipAbstract
Every prospective student has the opportunity to get a scholarship within an educational institution, but it is often not on target so a more accurate data mining approach is needed. However, the C4.5 algorithm has a weakness in its level of accuracy when managing large amounts of data so it needs to be optimized. This research aims to optimize the C4.5 algorithm using stratified sampling and forward selection methods in determining the eligibility of scholarship recipients. The data came from prospective students at Anwar Medika University with a sample size of 263 records which were then processed using the RapidMinner application for the C4.5 algorithm without optimization and the C4.5 algorithm with optimization of the stratified sampling + forward selection method. The research results show a higher level of accuracy in the C4.5 algorithm with optimization using the stratified sampling + forward selection method, namely 81.75% compared to the accuracy level in the C4.5 algorithm without optimization, namely 80.23%. Thus, the conclusion of this research is that the C4.5 algorithm with optimization using stratified sampling and forward selection methods is more effective and can overcome the shortcomings of the C4.5 algorithm without optimization
Downloads
References
A. Hidayat, S. Fatimah, dan D. N. Rosidin, “Challenges and Prospects of Islamic Education Institutions and Sustainability in The Digital Era,” Nazhruna J. Pendidik. Islam, vol. 5, no. 2, hal. 351–366, 2021.
E. N. Qorimah dan S. Sutama, “Studi Literatur: Media Augmented Reality (AR) Terhadap Hasil Belajar Kognitif,” J. Basicedu, vol. 6, no. 2, hal. 2055–2060, 2022.
A. Hakim, “Faktor penyebab anak putus sekolah,” J. Pendidik., vol. 21, no. 2, hal. 122–132, 2020.
M. Hatta, “Implementasi Metode Simple Additive Weighting Pada Sistem DSS Seleksi Penerimaan Beasiswa Perguruan Tinggi,” J. Ilm. INTECH Inf. Technol. J. UMUS, vol. 2, no. 01, hal. 31–40, 2020.
I. Kaunang, I. Abdul, A. Maruwae, F. Bumulo, dan A. Bahsoan, “PENGARUH PEMANFAATAN BEASISWA PROGRAM INDONESIA PINTAR (PIP) TERHADAP MOTIVASI BELAJAR SISWA,” Damhil Educ. J., vol. 4, no. 1, hal. 29–38, 2024.
S. Yunita dan V. N. Alaeyda, “Penerapan Algoritma C4. 5 Untuk Prediksi Penerimaan Beasiswa di SD 4 Pelangsian,” ICIT J., vol. 8, no. 2, hal. 181–193, 2022.
A. Nurjana, A. P. Windarto, dan H. Qurniawan, “IMPLEMENTASI DATA MINING DALAM MEMPREDIKSI PRESTASI SISWA DENGAN ALGORITMA C4. 5,” Smart EDU Bul. Educ., vol. 1, no. 4, hal. 171–180, 2022.
R. Amalia, “Penerapan data mining untuk memprediksi hasil kelulusan siswa menggunakan metode naïve bayes,” J. Inform. Dan Sist. Inf., vol. 6, no. 1, hal. 33–42, 2020.
B. Baskoro, S. Sriyanto, dan L. S. Rini, “Prediksi Penerima Beasiswa dengan Menggunakan Teknik Data Mining di Universitas Muhammadiyah Pringsewu,” in Prosiding Seminar Nasional Darmajaya, 2021, vol. 1, hal. 87–94.
A. Byna dan M. Basit, “Penerapan Metode Adaboost Untuk Mengoptimasi Prediksi Penyakit Stroke Dengan Algoritma Naïve Bayes,” J. Sisfokom (Sistem Inf. dan Komputer), vol. 9, no. 3, hal. 407–411, 2020.
I. Ubaedi dan Y. M. Djaksana, “Optimasi Algoritma C4. 5 Menggunakan Metode Forward Selection Dan Stratified Sampling Untuk Prediksi Kelayakan Kredit,” JSiI (Jurnal Sist. Informasi), vol. 9, no. 1, hal. 17–26, 2022.
A. Azahari dan N. Nursobah, “Rekomendasi Penerimaan Beasiswa Yayasan Untuk Siswa Baru SMK TI Airlangga dengan Algoritma C4. 5,” J. MEDIA Inform. BUDIDARMA, vol. 5, no. 2, hal. 609–614, 2021.
A. Surip, M. A. Pratama, I. Ali, A. R. Dikananda, dan A. I. Purnamasari, “Penerapan Machine Learning menggunakan algoritma C4. 5 berbasis PSO dalam Menganalisa Data Siswa Putus Sekolah,” Informatics Educ. Prof. J. Informatics, vol. 5, no. 2, hal. 147–155, 2021.
N. Nadiah, S. Soim, dan S. Sholihin, “Implementation of Decision Tree Algorithm Machine Learning in Detecting Covid-19 Virus Patients Using Public Datasets,” Indones. J. Artif. Intell. Data Min., vol. 5, no. 1, hal. 37, 2022.
D. A. R. Saragih, M. Safii, dan D. Suhendro, “Penerapan Data Mining Klasifikasi Tingkat Kepuasan Mahasiswa Terhadap Pelayanan Sistem Informasi di Program Studi Sistem Informasi,” J. Inf. Syst. Res., vol. 2, no. 2, hal. 173–177, 2021.
V. S. Ginting, K. Kusrini, dan E. Taufiq, “Implementasi algoritma c4. 5 untuk memprediksi keterlambatan pembayaran sumbangan pembangunan pendidikan sekolah menggunakan python,” Inspir. J. Teknol. Inf. dan Komun., vol. 10, no. 1, hal. 36–44, 2020.
Y. C. Raya dan S. Arfida, “Penerapan Algoritma Decision Tree C4. 5 Untuk Penerimaan Beasiswa Kip Bagi Mahasiswa Baru Berbasis Website: Penerapan Algoritma Decision Tree C4. 5,” Tek. J. Ilm. Bid. Ilmu Rekayasa, vol. 18, no. 2, hal. 377–388, 2024.
I. Yulianti, R. A. Saputra, M. S. Mardiyanto, dan A. Rahmawati, “Optimasi Akurasi Algoritma C4. 5 Berbasis Particle Swarm Optimization dengan Teknik Bagging pada Prediksi Penyakit Ginjal Kronis,” Techno. Com, vol. 19, no. 4, hal. 411–421, 2020.
Y. T. Widayati, Y. Prihati, dan S. Widjaja, “Analisis Dan Komparasi Algoritma Na Ve Bayes Dan C4. 5 Untuk Klasifikasi Loyalitas Pelanggan Mnc Play Kota Semarang,” J. Transform., vol. 18, no. 2, hal. 161–172, 2021.
A. Ardiyansyah, R. Saadah, L. Lisnawanty, dan D. Purwaningtias, “Peningkatan Akurasi Metode C4. 5 Untuk Memprediksi Kelayakan Kredit Berbasis Stratified Sampling Dan Optimize Selection,” KLIK-KUMPULAN J. ILMU Komput., vol. 10, no. 2, hal. 239–249, 2023.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Optimasi Algoritma C4.5 Menggunakan Metode Forward Selection Dan Stratified Sampling Untuk Prediksi Kelayakan Mahasiswa Penerima Beasiswa
ARTICLE HISTORY
Issue
Section
Copyright (c) 2024 Bentar Candra P, Kusrini Kusrini, Tonny Hidayat
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).