Perbandingan Metode Naïve Bayes dan Support Vector Machine Dalam Analisis Sentimen Terhadap Tokoh Publik
DOI:
https://doi.org/10.30865/klik.v4i6.1928Keywords:
Sentiment Analysis; Public Figure; Social Media; Naive Bayes; Support Vector MachineAbstract
The existence of Twitter, or now replaced with Name X, has been widely used by various levels of society in recent years. And social media X is one of the media that represents public responses to public figures. This study aims to perform sentiment analysis on the opinions of the Indonesian public regarding the public figure Luhut Binsar Pandjaitan on social media X. The data used is 4008 data related to the topic which was obtained through web scraping techniques. This study compares the performance of two popular classification algorithms in sentiment analysis, namely Naïve Bayes and Support Vector Machine (SVM). Before the comparison, SMOTE (Synthetic Minority Over-sampling Technique) optimization was carried out to balance the number of minority and majority data so that both algorithms could learn better from each sentiment class. The results of the comparison show that the Naïve Bayes algorithm produces an accuracy of 95%, while the SVM produces an accuracy of 99%, precision 99%, recall 100%, and F1-Score 99%. Performance evaluation was also carried out by analyzing the confusion matrix of each algorithm. It can be concluded that SVM has the best performance in classifying positive and negative sentiments more accurately than Naïve Bayes for the case of sentiment analysis towards the public figure Luhut Binsar Pandjaitan. Therefore, the SVM algorithm can be a better choice for sentiment analysis towards public figures. This research contributes to the understanding of public opinion about Luhut's performance while serving as the Coordinating Minister for Maritime Affairs and Investment of Indonesia
Downloads
References
S. W. Ritonga, . Y., M. Fikry, and E. P. Cynthia, “Klasifikasi Sentimen Masyarakat di Twitter terhadap Ganjar Pranowo dengan Metode Naïve Bayes Classifier,” Building of Informatics, Technology and Science (BITS), vol. 5, no. 1, Jun. 2023, doi: 10.47065/bits.v5i1.3535.
T. T. Widowati and M. Sadikin, “ANALISIS SENTIMEN TWITTER TERHADAP TOKOH PUBLIK DENGAN ALGORITMA NAIVE BAYES DAN SUPPORT VECTOR MACHINE,” Jurnal SIMETRIS, vol. 11, no. 2, 2020, Accessed: Jun. 19, 2024. [Online]. Available: http://dx.doi.org/10.24176/simet.v11i2.4568
W. Ningsih, B. Alfianda, R. Rahmaddeni, and D. Wulandari, “Perbandingan Algoritma SVM dan Naïve Bayes dalam Analisis Sentimen Twitter pada Penggunaan Mobil Listrik di Indonesia,” MALCOM: Indonesian Journal of Machine Learning and Computer Science, vol. 4, no. 2, pp. 556–562, Feb. 2024, doi: 10.57152/malcom.v4i2.1253.
R. Satria Buana, W. Gata, A. Zevana, P. Widodo, H. Setiawan, and K. Hilyati, “) 2023 1,2,3,5 Fakultas Teknologi Informasi,” vol. 7, no. 2, 2023, doi: 10.35870/jti.
P. W. Ratiasasadara, S. Sudarno, and T. Tarno, “ANALISIS SENTIMEN PENERAPAN PPKM PADA TWITTER MENGGUNAKAN NAIVE BAYES CLASSIFIER DENGAN SELEKSI FITUR CHI-SQUARE,” Jurnal Gaussian, vol. 11, no. 4, pp. 580–590, Feb. 2023, doi: 10.14710/j.gauss.11.4.580-590.
D. F. Salsabillah, D. E. Ratnawati, and N. Y. Setiawan, “Analisis Sentimen Ulasan Rumah Makan Menggunakan Perbandingan Algoritma Support Vector Machine dengan Naive bayes (Studi Kasus: Ayam Goreng Nelongso Cabang Singosari, Malang),” Jurnal Teknologi Informasi dan Ilmu Komputer, vol. 11, no. 1, pp. 107–116, Feb. 2024, doi: 10.25126/jtiik.20241117584.
T. Rosyida, H. P. Putro, and H. Wahyono, “ANALISIS SENTIMEN TERHADAP PILPRES 2024 BERDASARKAN OPINI DARI TWITTER MENGGUNAKAN NAÏVE BAYES DAN SVM,” ANALISIS SENTIMEN TERHADAP PILPRES 2024 BERDASARKAN OPINI DARI TWITTER MENGGUNAKAN NAÏVE BAYES DAN SVM, vol. Vol.26, 2023, [Online]. Available: www.apjii.or.id
S. Riyadiiban and S. Riyadi, “Analisis Sentimen Opini Masyarakat Terhadap Stadion Jakarta Internasional Stadium (Jis) Pada Twitter … Analisis Sentimen Opini Masyarakat Terhadap Stadion Jakarta Internasional Stadium (Jis) Pada Twitter Dengan Perbandingan Metode Naive Bayes Dan Support Vector Machine,” Jurnal Sains dan Teknologi, vol. 5, no. 3, p. 2024, doi: 10.55338/saintek.v5i3.2962.
J. Ipmawati, S. Saifulloh, and K. Kusnawi, “Analisis Sentimen Tempat Wisata Berdasarkan Ulasan pada Google Maps Menggunakan Algoritma Support Vector Machine,” MALCOM: Indonesian Journal of Machine Learning and Computer Science, vol. 4, no. 1, pp. 247–256, Jan. 2024, doi: 10.57152/malcom.v4i1.1066.
D. Alita and R. A. Shodiqin, “Sentimen Analisis Vaksin Covid-19 Menggunakan Naive Bayes Dan Support Vector Machine,” Journal of Artificial Intelligence and Technology Information (JAITI), vol. 1, no. 1, pp. 1–12, Feb. 2023, doi: 10.58602/jaiti.v1i1.20.
Ade Dwi Dayani, Yuhandri, and G. Widi Nurcahyo, “Analisis Sentimen Terhadap Opini Publik pada Sosial Media Twitter Menggunakan Metode Support Vector Machine,” Jurnal KomtekInfo, pp. 1–10, Mar. 2024, doi: 10.35134/komtekinfo.v11i1.439.
R. I. Agustin, “KOMPARASI ALGORITMA NAÏVE BAYES DAN SVM UNTUK ANALISIS SENTIMEN TWITTER KORUPSI BANSOS BERAS MASA PANDEMI,” Jurnal Informatika dan Teknik Elektro Terapan, vol. 12, no. 2, Apr. 2024, doi: 10.23960/jitet.v12i2.4020.
N. L. P. M. Putu, Ahmad Zuli Amrullah, and Ismarmiaty, “Analisis Sentimen dan Pemodelan Topik Pariwisata Lombok Menggunakan Algoritma Naive Bayes dan Latent Dirichlet Allocation,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 5, no. 1, pp. 123–131, Feb. 2021, doi: 10.29207/resti.v5i1.2587.
M. Syarifuddinn, “ANALISIS SENTIMEN OPINI PUBLIK MENGENAI COVID-19 PADA TWITTER MENGGUNAKAN METODE NAÏVE BAYES DAN KNN,” INTI Nusa Mandiri, vol. 15, no. 1, pp. 23–28, Aug. 2020, doi: 10.33480/inti.v15i1.1347.
J. Homepage, N. C. Agustina, D. Herlina Citra, W. Purnama, C. Nisa, and A. Rozi Kurnia, “The Implementation of Naïve Bayes Algorithm for Sentiment Analysis of Shopee Reviews on Google Play Store Implementasi Algoritma Naive Bayes untuk Analisis Sentimen Ulasan Shopee pada Google Play Store,” MALCOM: Indonesian Journal of Machine Learning and Computer Science, vol. 2, no. 1, pp. 47–54, 2022, Accessed: Jun. 18, 2024. [Online]. Available: https://doi.org/10.57152/malcom.v2i1.195
M. Y. Siregar, A. Davy Wiranata, and R. A. Saputra, “Analisis Sentimen Pada Ulasan Pengguna Aplikasi Streaming Vidio Menggunakan Metode Naïve Bayes,” KLIK: Kajian Ilmiah Informatika dan Komputer Media Online, vol. 4, no. 5, pp. 2419–2429, 2024, doi: 10.30865/klik.v4i5.1787.
D. Ananda and R. R. Suryono, “Analisis Sentimen Publik Terhadap Pengungsi Rohingya di Indonesia dengan Metode Support Vector Machine dan Naïve Bayes,” JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 8, no. 2, 2024, doi: 10.30865/mib.v8i2.7517.
D. Oktavia and Y. R. Ramadahan, “Analisis Sentimen Terhadap Penerapan Sistem E-Tilang Pada Media Sosial Twitter Menggunakan Algoritma Support Vector Machine (SVM),” Media Online), vol. 4, no. 1, pp. 407–417, 2023, doi: 10.30865/klik.v4i1.1040.
I. A. Hidayah, R. Kusumawati, Z. Abidin, and M. Imamuddin, “Analysis of Public Sentiment Towards The Tiktok Application Using The Naive Bayes Algorithm and Support Vector Machine,” Architecture and High Performance Computing, vol. 6, no. 2, 2024, doi: 10.47709/cnahpc.v6i2.3990.
S. Hidayatulloh, W. Putra, and D. Febriawan, “KLIK: Kajian Ilmiah Informatika dan Komputer Analisis Sentimen Ulasan Aplikasi Digital Korlantas POLRI Menggunakan Naïve Bayes pada Google Play Store,” Media Online, vol. 4, no. 4, 2024, doi: 10.30865/klik.v4i4.1600.
S. Berliani and S. Lestari, “Analisis Sentimen Masyarakat Terhadap Isu Pecat Sri Mulyani Pada Twitter Menggunakan Metode Naive Bayes Dan Support Vector Machine,” Jurnal Sains dan Teknologi, vol. 5, no. 3, pp. 951–960, Apr. 2024, doi: 10.55338/saintek.v5i3.2746.
B. Ramadhani, R. R. Suryono, and K. Kunci, “Komparasi Algoritma Naïve Bayes dan Logistic Regression Untuk Analisis Sentimen Metaverse,” JURNAL MEDIA INFORMATIKA BUDIDARMA , vol. 8, no. 2, 2024, doi: 10.30865/mib.v8i2.7458.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Perbandingan Metode Naïve Bayes dan Support Vector Machine Dalam Analisis Sentimen Terhadap Tokoh Publik
ARTICLE HISTORY
Issue
Section
Copyright (c) 2024 Ardiyansah, Parjito
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).