Penerapan Normalisasi Data Metode Decimal Scaling Dan Metode K-Means Dalam Mengelompokkan Kasus Demam Berdarah
DOI:
https://doi.org/10.30865/klik.v4i6.1925Keywords:
Dengue Fever; Data Mining; Data Normalization; Decimal Scaling; K-MeansAbstract
Dengue fever, caused by a virus transmitted through the bite of Aedes aegypti and Aedes albopictus mosquitoes, continues to show an alarming trend of increasing cases. Although prevention and control efforts have been widely implemented, this increase is raising serious concerns among public health experts and governments. The causes of the increase in dengue fever cases in 2024 may vary, including climate change which affects the distribution of mosquitoes that carry the virus, urbanization which increases mosquito habitat, and changes in human behavior that affect the level of environmental cleanliness. However, this data is often scattered and has different scales, making it difficult to directly analyze. Data analysis of dengue fever cases is important to understand the pattern of disease spread and take preventive steps using the Decimal Scaling method and grouping data using the K-Means method helps in understanding patterns of dengue fever cases. Where is the Decimal Scaling method to produce better and balanced data. After the data is normalized, the next process is to explore information on dengue fever data by applying data mining grouping using the K-Means method. Based on the results of the cendroit test results where cluster 0 has a greater value for each dengue fever grade value as seen in Figure 4, the test results were obtained with a total sample of 197 test data from 2019 to 2023 with 2 number of clusters where cluster 0 has 81 members and cluster 1 has 115 members. So it can be concluded that those who get priority for treatment are more important in the C0 cluster group.
Downloads
References
R. T. S. Muhammad Hariyanto, “Clustering pada Data Mining untuk Mengetahui Potensi Penyebaran Penyakit DBD Menggunakan Metode Algoritma K-Means dan Metode Perhitungan Jarak Euclidean Distance,” Sist. Komput. dan Tek. Inform., vol. 1, no. 1, hal. 117–122, 2018.
A. Sukohar, “Demam Berdarah Dengue ( DBD ),” Medula, vol. 2, no. 2, hal. 1–15, 2014.
E. Buulolo, Data Mining Untuk Perguruan Tinggi. Medan: CV Budi Utama, 2020.
A. Wanto et al., Data Mining?: Algoritma dan Implementasi. Medan: Yayasan Kita Menulis, 2020.
Z. Nabila, A. R. Isnain, Permata, dan Z. Abidin, “ANALISIS DATA MINING UNTUK CLUSTERING KASUS COVID-19 DI PROVINSI LAMPUNG DENGAN ALGORITMA K-MEANS,” J. Teknol. dan Sist. Inf., vol. 2, no. 2, hal. 100–108, 2021.
A. Harmain, H. Kurniawan, D. Maulina, dan M. Universitas Amikom Yogyakarta, “Data Normalization for K-Means Efficiency on Groups of Areas With Potential Fores and /Land Fire Based on Heat Spots Distribution,” Teknimedia, vol. 2, no. 2, hal. 83–89, 2021.
D. A. Nasution, H. H. Khotimah, dan N. Chamidah, “Perbandingan Normalisasi Data untuk Klasifikasi Wine Menggunakan Algoritma K-NN,” Comput. Eng. Sci. Syst. J., vol. 4, no. 1, hal. 78, 2019, doi: 10.24114/cess.v4i1.11458.
E. M. Fitri, R. R. Suryono, dan A. Wantoro, “Klasterisasi Data Penjualan Berdasarkan Wilayah Menggunakan Metode K-Means Pada Pt Xyz,” J. Komputasi, vol. 11, no. 2, hal. 157–168, 2023, doi: 10.23960/komputasi.v11i2.12582.
A. Yudhistira dan R. Andika, “Pengelompokan Data Nilai Siswa Menggunakan Metode K-Means Clustering,” J. Artif. Intell. Technol. Inf., vol. 1, no. 1, hal. 20–28, 2023, doi: 10.58602/jaiti.v1i1.22.
T. Soeb Aripin dan G. P. N. S. P. Angin, “Penerapan Metode K-Medoids Clustering Pada Penanganan Kasus Demam Berdarah,” BEES Bull. Electr. Electron. Eng., vol. 3, no. 3, hal. 139–146, 2023, doi: 10.47065/bees.v3i3.3173.
M. R. Kusnaidi, T. Gulo, dan S. Aripin, “Penerapan Normalisasi Data Dalam Mengelompokkan Data Mahasiswa Dengan Menggunakan Metode K-Means Untuk Menentukan Prioritas Bantuan Uang Kuliah Tunggal,” J. Comput. Syst. Informatics, vol. 3, no. 4, hal. 330–338, 2022, doi: 10.47065/josyc.v3i4.2112.
A. S. Soetoko dan D. F. Soetoko, “Meningkatkan Kualitas Hidup Penderita Gangguan Metabolik di Klinik Pratama Semarang melalui Pelatihan Pengaturan Diet dan Senam Kaki,” J. ABDIMAS-KU J. Pengabdi. Masy. Kedokt., vol. 1, no. 3, hal. 126, 2022, doi: 10.30659/abdimasku.1.3.126-133.
M. A. Sembiring, “Penerapan Metode Algoritma K-Means Clustering Untuk Pemetaan Penyebaran Penyakit Demam Berdarah Dengue (Dbd),” J. Sci. Soc. Res., vol. 4, no. 3, hal. 336, 2021, doi: 10.54314/jssr.v4i3.712.
M. Jasri, A. Wijaya, dan R. Sunggara, “Penerapan Data Mining untuk Klasifikasi Penyakit Demam Berdarah Dengue (DBD) Dengan Metode Naïve Bayes (Studi Kasus Puskesmas Taman Krocok),” SMARTICS J., vol. 8, no. 1, hal. 35–42, 2022, [Daring]. Tersedia pada: https://doi.org/10.21067/smartics.v8i1.7375.
M. Sholeh, D. Andayati, dan R. Y. Rachmawati, “Data Mining Model Klasifikasi Menggunakan Algoritma K-Nearest Neighbor Dengan Normalisasi Untuk Prediksi Penyakit Diabetes,” TeIKa, vol. 12, no. 02, hal. 77–87, 2022, doi: 10.36342/teika.v12i02.2911.
S. Emalia Saqila, I. Putri Ferina, dan A. Iskandar, “Analisis Perbandingan Kinerja Clustering Data Mining Untuk Normalisasi Dataset,” J. Sist. Komput. dan Inform. Hal 356?, vol. 365, no. 2, 2023, doi: 10.30865/json.v5i2.6919.
Gde Agung Brahmana Suryanegara, Adiwijaya, dan Mahendra Dwifebri Purbolaksono, “Peningkatan Hasil Klasifikasi pada Algoritma Random Forest untuk Deteksi Pasien Penderita Diabetes Menggunakan Metode Normalisasi,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 5, no. 1, hal. 114–122, 2021, doi: 10.29207/resti.v5i1.2880.
N. Afiasari, N. Suarna, dan N. Rahaningsi, “Implementasi Data Mining Transaksi Penjualan Menggunakan Algoritma Clustering dengan Metode K-Means,” J. SAINTEKOM, vol. 13, no. 1, hal. 100–110, 2023, doi: 10.33020/saintekom.v13i1.402.
M. P. A. Ariawan, I. B. A. Peling, dan G. B. Subiksa, “Prediksi Nilai Akhir Matakuliah Mahasiswa Menggunakan Metode K-Means Clustering (Studi Kasus?: Matakuliah Pemrograman Dasar),” J. Nas. Teknol. dan Sist. Inf., vol. 9, no. 2, hal. 122–131, 2023, doi: 10.25077/teknosi.v9i2.2023.122-131.
I. Pii, N. Suarna, dan N. Rahaningsih, “Penerapan Data Mining Pada Penjualan Produk Pakaian Dameyra Fashion Menggunakan Metode K-Means Clustering,” JATI (Jurnal Mhs. Tek. Inform., vol. 7, no. 1, hal. 423–430, 2023, doi: 10.36040/jati.v7i1.6336.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Penerapan Normalisasi Data Metode Decimal Scaling Dan Metode K-Means Dalam Mengelompokkan Kasus Demam Berdarah
ARTICLE HISTORY
Issue
Section
Copyright (c) 2024 Ila Yati Beti, Hengki Juliansa
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).