Penerapan Metode Neural Network Berbasis Web Dalam Prediksi Harga Telur Ayam
DOI:
https://doi.org/10.30865/klik.v4i6.1865Keywords:
Prediction; Price; Chicken Egg; Neural Network; BackpropagationAbstract
The demand for animal protein consumption is increasing in line with the development and growth of the livestock industry. Chicken eggs are one of the choices as a source of protein due to their abundant availability and affordable price. However, Yogyakarta Province experiences unstable egg price fluctuations, as indicated by the imbalance between high demand and limited production. To overcome this challenge, the authors developed the use of the Neural Network Backpropagation method to predict chicken egg prices. The selection of this method is based on its reputation for providing accurate predictions in this case. The implementation of this method resulted in an accuracy rate of 85%, which provides farmers with one of the useful tools to better manage risks and plan their production. This research is expected to make a significant contribution to the livestock industry, by providing farmers with a useful tool to manage risks and plan their production activities. In addition, this research is also expected to provide a better understanding of market behavior for stakeholders in Yogyakarta Province and the wider community. Thus, it is expected that this effort will not only improve the sustainability of the local economy but will also advance the livestock industry as a whole. With the results of this study, farmers are expected to optimize their strategies in adjusting production to the fluctuating market demand. In addition, stakeholders in Yogyakarta Province can use this information to develop more effective policies to support the growth of the livestock sector, especially in chicken egg farming
Downloads
References
S. Paramita Nurhuda and A. Karimah, “Hakikat Manusia Sebagai Makhluk Sosial Dalam Pandangan Islam,” Humaniora dan Seni (JISHS), vol. 01, no. 4, pp. 684–690, Jun. 2023, [Online]. Available: http://jurnal.minartis.com/index.php/jishs
S. Novita, “TINJAUAN HUKUM ISLAM TERHADAP JUAL BELI TELUR AYAM DI RONOWIJAYAN SIMAN PONOROGO,” Universitas Muhammadiyah Surakarta, Surakarta, 2019.
D. Saputra, M. Safii, and M. Fauzan, “Implementasi Algoritma Backpropagation Dalam Memprediksi Harga Bahan Pangan,” Jurnal Penerapan Sistem Informasi (Komputer & Manajemen), vol. 1, no. 4, pp. 120–129, Oct. 2020.
J. Veri, I. Artikel, K. Kunci, and A. Jaringan Syaraf Tiruan Propagasi Balik Prediksi ABSTRAK, “Prediksi Harga Minyak Mentah Menggunakan Jaringan Syaraf Tiruan Crude Oil Price Prediction Using Artificial Neural Network,” vol. 21, no. 3, pp. 503–512, 2022, doi: 10.30812/matrik.v21i3.1382.
F. Bachtiar, “RANCANG BANGUN APLIKASI PREDIKSI HARGA EMAS MENGGUNAKAN FEEDFORWARD NEURAL NETWORK DENGAN ALGORITMA BACKPROPAGATION,” Universitas Teknologi Yogyakarta, Yogyakarta, 2018. [Online]. Available: http://eprints.uty.ac.id/id/eprint/1061
I. N. Peole, R. Ratianingsih, dan D. Lusiyanti, and P. Studi Matematika Jurusan Matematika, “MENGKAJI PERILAKU HARGA KOMODITI PANGAN DI KOTA PALU MENGGUNAKAN METODE BACKPROPAGATION,” Jurnal Ilmiah Matematika dan Terapan, vol. 15, no. 1, pp. 58–68, Jun. 2018.
Natasya, S. Musdalifah, and Andri, “Prediksi Harga Beras Di Tingkat Perdagangan Besar Indonesia Menggunakan Algoritma Backpropagation,” JURNAL ILMIAH MATEMATIKA DAN TERAPAN, vol. 18, no. 2, pp. 148–159, Dec. 2021, doi: 10.22487/2540766x.2021.v18.i2.15688.
M. Fajar and I. Gunawan, “KLIK: Kajian Ilmiah Informatika dan Komputer Penerapan Jaringan Syaraf Tiruan Dengan Metode Backpropagation Untuk Memprediksi Penjualan Sepeda Motor Yamaha Di Asli Motor Siantar,” Media Online), vol. 1, no. 4, pp. 180–186, 2021, [Online]. Available: https://djournals.com/klik
D. Marpaung, S. Sumarno, and I. Gunawan, “Prediksi Produktivitas Kelapa Sawit di PTPN IV dengan Algoritma Backpropagation,” KLIK: Kajian Ilmiah Informatika & Komputer, vol. 1, no. 2, pp. 35–41, Oct. 2020, [Online]. Available: https://djournals.com/index.php/klik
H. Kurniawan, W. Apriliah, I. Kurniawan, and D. Firmansyah, “Penerapan Metode Waterfall Dalam Perancangan Sistem Informasi Penggajian Pada SMK Bina Karya Karawang,” Jurnal Interkom: Jurnal Publikasi Ilmiah Bidang Teknologi Informasi dan Komunikasi, vol. 14, no. 4, pp. 13–23, Jan. 2020, doi: 10.35969/interkom.v14i4.58.
H. Said, N. Matondang, and H. Nurramdhani Irmanda, “Penerapan Algoritma K-Nearest Neighbor Untuk Memprediksi Kualitas Air Yang Dapat Dikonsumsi Application of K-Nearest Neighbor Algorithm to Predict Consumable Water Quality,” Techno.COM, vol. 21, no. 2, pp. 256–267, May 2022, [Online]. Available: https://publikasi.dinus.ac.id/index.php/technoc/article/view/5901
S. Jesika et al., “Implementasi Model Machine Learning dalam Mengklasifikasi Kualitas Air,” Jurnal Ilmiah Dan Karya Mahasiswa, vol. 1, no. 6, pp. 382–396, Dec. 2023, doi: 10.54066/jikma.v1i6.1162.
F. Putra, H. F. Tahiyat, R. M. Ihsan, R. Rahmaddeni, and L. Efrizoni, “Penerapan Algoritma K-Nearest Neighbor Menggunakan Wrapper Sebagai Preprocessing untuk Penentuan Keterangan Berat Badan Manusia,” MALCOM: Indonesian Journal of Machine Learning and Computer Science, vol. 4, no. 1, pp. 273–281, Jan. 2024, doi: 10.57152/malcom.v4i1.1085.
Z. Laila and N. Cahyono, “Estimasi Data Insight Social Media Ads Menggunakan Neural Network, Linear Regression dan Deep Learning,” Jurnal Sistem Komputer dan Informatika (JSON), vol. 4, no. 3, p. 562, Mar. 2023, doi: 10.30865/json.v4i3.5451.
R. Basuki and N. Budi, PEMROGRAMAN DEEP LEARNING DENGAN PYTHON. Sidoarjo: Indomedia Pustaka, 2021.
M. Arhami and M. Nasir, Data Mining Algoritma dan Implementasi. Yogyakarta: ANDI, 2020.
H. Elvaningsih, E. Elisawati, F. Tawakal, and M. Masrizal, “Prediksi Stok Obat Menggunakan Metode Backpropagation (Studi Kasus: Puskesmas Dumai Barat),” Seminar Nasional Sains dan Teknologi Informasi (SENSASI), vol. 3, no. 1, pp. 228–232, Aug. 2021, Accessed: May 13, 2024. [Online]. Available: https://prosiding.seminar-id.com/index.php/sensasi/article/view/588
I. Daqiqi, MACHINE LEARNING: Teori, Studi Kasus, dan Implementasi Menggunakan Python, 1st ed. Riau: UR PRESS, 2021.
Y. Febria Utami, G. Darmawan, and R. S. Pontoh, “Forecasting Electricity Sales Using the Artificial Neural Network Backpropagation Method,” Asian Journal of Applied Education (AJAE), vol. 2, no. 4, pp. 581–594, 2023, doi: 10.55927/ajae.v2i4.6456.
A. Lusiana and P. Yuliarty, “PENERAPAN METODE PERAMALAN (FORECASTING) PADA PERMINTAAN ATAP di PT X,” Jurnal Teknik Industri ITN Malang, vol. 10, no. 1, 2020, doi: 10.36040/industri.v10i1.2530.
N. Hikmatia and M. I. Zul, “Aplikasi Penerjemah Bahasa Isyarat Indonesia menjadi Suara berbasis Android menggunakan Tensorflow,” Jurnal Komputer Terapan, vol. 7, no. 1, May 2021, doi: 10.35143/jkt.v7i1.4629.
M. Riziq sirfatullah Alfarizi, M. Zidan Al-farish, M. Taufiqurrahman, G. Ardiansah, and M. Elgar, “PENGGUNAAN PYTHON SEBAGAI BAHASA PEMROGRAMAN UNTUK MACHINE LEARNING DAN DEEP LEARNING,” Karimah Tauhid, vol. 2, no. 1, 2023, doi: 10.30997/karimahtauhid.v2i1.7518.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Penerapan Metode Neural Network Berbasis Web Dalam Prediksi Harga Telur Ayam
ARTICLE HISTORY
Issue
Section
Copyright (c) 2024 Febiansyah Annaufal Ahnaf Fauzi, Sri Wulandari, Donny Avianto
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).