Redesign Tata Letak Produk Berdasarkan Perilaku Pembelian Konsumen Menggunakan Metode Algoritma Apriori


Authors

  • Cindi Wulandari Universitas Bina Insan, Lubuklinggau, Indonesia
  • Rusdiyanto Universitas Bina Insan, Lubuklinggau, Indonesia
  • M Rama Barokah Setian Jaya Universitas Bina Insan, Lubuklinggau, Indonesia

DOI:

https://doi.org/10.30865/klik.v4i3.1522

Keywords:

Apriori Algorithm; Layout; Association Rule; Redesign

Abstract

The development of technology has had a huge impact on human life. One of these influences in the field of information is the use of computers as a useful medium for companies by trying to collect as much information as possible to get maximum profit. In addition, the use of database systems plays a very important role for data management and is needed in various aspects of life, both in education, business, banking, and others. Mars Mart stores currently sell baby supplies, which provide a variety of products. The pandemic period has greatly affected the sales process at Mars Mart Store. So that shop owners must be good at organizing merchandise so that it is easy to see and attract the attention of buyers. The effect of the pandemic is that the raw materials take a long time to sell so that within 1 year the goods that should have been sold become unsold and expired. It is hoped that the system for determining the layout of merchandise can help sellers to increase sales of these goods because the display of merchandise is in accordance with consumer purchasing patterns. The method used to solve existing problems is the Apriori algorithm has two main processes, namely merging (join) and pruning (prune). The join process is a process that combines each existing item with other items until no more combinations can be formed, and the result of this research is that there are 6 rule bases that exist

Downloads

Download data is not yet available.

References

P. H. Winasis, M. Program, P. Magister, I. Komputer, and U. B. Luhur, “Penerapan Data Mining Untuk Analisis Pola Apriori Pada Mall Cpm Jakarta,” vol. 2, no. 2, 2019.

D. N. Sari, “Analisis Tata Letak Bisnis Ritel Melalui Pendekatan Perilaku Konsumen (Studi Kasus KPRI Universitas Brawijaya),” J. Ilm. Mhs. FEB, 2018, [Online]. Available: https://jimfeb.ub.ac.id/index.php/jimfeb/article/view/5036.

A. Anas, “Implementasi Algoritma Apriori Untuk Menentukan Strategi Promosi STIE-Graha Karya Muara Bulian,” J. Ilm. Media Sisfo, vol. 14, no. 1, pp. 64–70, 2020, doi: 10.33998/mediasisfo.2020.14.1.790.

S. Al Syahdan and A. Sindar, “Data Mining Penjualan Produk Dengan Metode Apriori Pada Indomaret Galang Kota,” J. Nas. Komputasi dan Teknol. Inf., vol. 1, no. 2, 2018, doi: 10.32672/jnkti.v1i2.771.

M. S. Ariefana Ria Riszky, “Data Mining Menggunakan Algoritma Apriori untuk Rekomendasi Produk bagi Pelanggan,” J. Teknol. dan Sist. Komput., vol. 7, no. 3, pp. 103–108, 2019, doi: 10.14710/jtsiskom.7.3.2019.103-108.

S. Saefudin and S. DN, “Penerapan Data Mining Dengan Metode Algoritma Apriori Untuk Menentukan Pola Pembelian Ikan,” JSiI (Jurnal Sist. Informasi), vol. 6, no. 2, p. 36, 2019, doi: 10.30656/jsii.v6i2.1587.

A. Firmansyah and N. Merlina, “Prediksi Pola Penjualan Tiket Kapal Pt. Pelni Cabang Makassar Menggunakan Metode Algoritma Apriori,” JITK (Jurnal Ilmu Pengetah. dan Teknol. Komputer), vol. 5, no. 2, pp. 183–190, 2020, doi: 10.33480/jitk.v5i2.1123.

C. N. Dengen, K. Kusrini, and E. T. Luthfi, “Penentuan Association Rule Pada Kelulusan Mahasiswa Menggunakan Algoritma Apriori,” J. Rekayasa Teknol. Inf., vol. 3, no. 1, p. 20, 2019, doi: 10.30872/jurti.v3i1.2256.

P. G. S. C. Nugraha, I. W. Aribawa, I. P. O. Priyana, and G. Indrawan, “Penerapan Metode Decision Tree(Data Mining) Untuk Memprediksi Tingkat Kelulusan Siswa Smpn1 Kintamani,” Semin. Nas. Vokasi dan Teknol., pp. 35–44, 2016.

I. Djamaludin and A. Nursikuwagus, “Analisis Pola Pembelian Konsumen Pada Transaksi Penjualan Menggunakan Algoritma Apriori,” Simetris J. Tek. Mesin, Elektro dan Ilmu Komput., vol. 8, no. 2, p. 671, 2017, doi: 10.24176/simet.v8i2.1566.

E. D. Reni Kurniah, Dadang Yunika Surya Putra, “Penerapan Data Mining Decission Tree Algoritma C4.5 Untuk Mengetahui Tingkat Kepuasan,” J. Inform. dan Teknol., vol. 5, no. 2, p. 316, 2022, [Online]. Available: https://dx.doi.org/10.29408/jit.v5i2.5910.

H. Kusumo, E. Sediyono, and M. Marwata, “Analisis Algoritma Apriori untuk Mendukung Strategi Promosi Perguruan Tinggi,” Walisongo J. Inf. Technol., vol. 1, no. 1, p. 49, 2019, doi: 10.21580/wjit.2019.1.1.4000.

D. E. Satie, S. Suparni, and A. B. Pohan, “Analisa Algoritma Apriori Pada Pola Peminjaman Buku di Perpustakaan ITB Ahmad Dahlan,” J. Media Inform. Budidarma, vol. 4, no. 1, p. 136, 2020, doi: 10.30865/mib.v4i1.1475.

P. Wijaya and M. Siddik, “Penerapan Association Rule Untuk Menentukan Pola Prilaku Konsumen Dalam Membantu Strategi Penjualan,” Agustus, vol. 6, no. 3, 2022.

I. K. Juni Arta, G. Indrawan, and G. R. Dantes, “Data Mining Rekomendasi Calon Mahasiswa Berprestasi Di Stmik Denpasar Menggunakan Metode Technique for Others Reference By Similarity To Ideal Solution,” JST (Jurnal Sains dan Teknol., vol. 5, no. 2, pp. 11–21, 2017, doi: 10.23887/jstundiksha.v5i2.8549.

Sofyan, “Implementation of Data Mining with Association Rule in Decision Making for Product Purchase Correlation using the Apriori Algorithm,” J. Chem. Inf. Model., vol. 53, no. 9, pp. 1689–1699, 2019.

R. Saadah, B. Lailiah, W. Gata, M. Ifan Rifani Ihsan, and S. Nusa Mandiri Jalan Margonda Raya No, “ANALISA ASOSIASI DATA MINING PENJUALAN MEUBEL MENGGUNAKAN ALGORITMA APRIORI PADA MASTER BORNEO PONTIANAK SELATAN,” Drh. Khusus Ibuk. Jakarta, vol. 13, no. 2, p. 21231170, 2020, [Online]. Available: http://journal.stekom.ac.id/index.php/elkom?page31.

U. A. Rosyidah and H. Oktavianto, “Pencarian Pola Asosiasi Keluhan Pasien Menggunakan Teknik Association Rule Mining,” INFORMAL Informatics J., vol. 3, no. 1, p. 1, 2019, doi: 10.19184/isj.v3i1.5541.

H. Oktafia et al., “IMPLEMENTASI ASOSIASI RULE MINING PADA DATA TRANSAKSI Abstrak Penelitian ini menerapkan algoritma apriori pada dataset berupa data histori transaksi penjualan . Tahapan-tahapan penelitian adalah pengumpulan data , prapemrosesan data , analisis pola frekue,” vol. 1, no. 1, pp. 30–35, 2022.

K. Printo Nana and L. Junaedi, “Penerapan Association Rule Pada Sistem Rekomendasi Produk Properti Berdasarkan Pola Interaksi Pengguna,” Antivirus J. Ilm. Tek. Inform., vol. 15, no. 1, pp. 30–43, 2021, doi: 10.35457/antivirus.v15i1.1292.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Redesign Tata Letak Produk Berdasarkan Perilaku Pembelian Konsumen Menggunakan Metode Algoritma Apriori

Dimensions Badge

ARTICLE HISTORY


Published: 2023-12-31
Abstract View: 138 times
PDF Download: 113 times