Klasifikasi Data Penduduk Penerima Bantuan Pangan Non Tunai Menggunakan Algoritma Naïve Bayes


Authors

  • Satrianansyah Universitas Bina Insan, Lubuklinggau, Indonesia
  • Armanto Universitas Bina Insan, Lubuklinggau, Indonesia
  • Susanto Universitas Bina Insan, Lubuklinggau, Indonesia

DOI:

https://doi.org/10.30865/klik.v4i3.1489

Keywords:

Naïve Bayes Algorithm; BPNT; Poor People

Abstract

Indonesia's population is increasing, and people are starting to move from one island to another. This is caused by people who certainly want to get a more decent life. Every citizen makes various efforts to fulfill their standard of living by working as farmers, entrepreneurs, private employees and other jobs. But sometimes the jobs that have been done are not also able to raise the standard of living and the economy of the population, so there are still many people who fall into the poor category. There are many government programs to help alleviate the economic level of the poor, one of which is Non-Cash Food Assistance (BPNT). However, there is an obstacle where there is a lack of socialization to the community regarding this matter because in some areas there is not a system that is sufficient to obtain precise and accurate information about the data collection of the poor. This also causes a lot of abuse of the right to get assistance from the government. Assistance that should be obtained by the poor but then does not fall into the right hands due to the many irresponsible people who take advantage of conditions like this. Research on data collection of poor people this time was conducted at the Tebing Tinggi City Social Service, where in this Social Service there is no application that can record poor people in the city accurately and accurately. In this research, the Naïve Bayes algorithm is used to determine which people are categorized as poor and deserve to receive assistance. The result of this research is a website system that can display the results of calculations of which people are eligible to receive and which are not eligible to receive assistance. The purpose of this research is to help the Tebing Tinggi City Social Service in terms of facilitating village assistance to classify potential recipients of non-cash assistance in the city of Tebing Tinggi. The results of the research obtained the results of the value of people who are eligible to receive assistance based on the data in the Inoutkan is 2.947808918805

Downloads

Download data is not yet available.

References

E. M. Nurahman, Muhammad Mastur Alfitri, “Klasifikasi Data Penduduk Untuk Menerima Bantuan Pangan Non Tunai Menggunakan Algoritma Naïve Bayes,” JURIKOM (Jurnal Ris. Komputer), vol. 9, no. 4, p. 1035, 2022, doi: 10.30865/jurikom.v9i4.4678.

C. A. Sugianto and F. R. Maulana, “Algoritma Naïve Bayes Untuk Klasifikasi Penerima Bantuan Pangan Non Tunai ( Studi Kasus Kelurahan Utama ),” Techno.Com, vol. 18, no. 4, pp. 321–331, 2019, doi: 10.33633/tc.v18i4.2587.

D. F. Bustami, Yesy Afrillia, Safwandi, Hafizh Al-Kautsar Aidilof, “Implementasi Metode Naïve Bayes pada Penentuan Bantuan Sosial dalam Masa Pandemi Covid – 19,” J. TECHSI, vol. 14, no. 1, pp. 01–13, 2023, doi: 10.29103/techsi.v14i1.6959.

N. Nurahman and S. Aminah, “Evaluasi Penerimaan Bantuan Sembako Menggunakan Metode Klasifikasi Data Mining Algoritma C4.5,” semanTIK, vol. 9, no. 1, p. 65, 2023, doi: 10.55679/semantik.v9i1.35468.

S. B. R. Muhamad Fahmi Nugraha, “Penerapan Naïve Bayes dalam Mengklasifikasi Calon Penerima Bantuan Pangan Non Tunai di Desa Nanjung Mekar,” … Syst. Journal), vol. 5, no. 2, pp. 137–146, 2022.

M. Mastur Alfitri and D. Rusda, “Evaluasi Performa Algoritma Naïve Bayes Dalam Mengklasifikasi Penerima Bantuan Pangan Non Tunai,” J. Media Inform. Budidarma, vol. 7, no. 3, pp. 1433–1445, 2023, doi: 10.30865/mib.v7i3.6151.

Naomi Chatrina Siregar, Riki Ruli A. Siregar, and M. Yoga Distra Sudirman, “Implementasi Metode Naive Bayes Classifier (NBC) Pada Komentar Warga Sekolah Mengenai Pelaksanaan Pembelajaran Jarak Jauh (PJJ),” J. Teknol., vol. 3, no. 1, pp. 102–110, 2020.

N. Kharomatun Nuruhul Mustofa, Eka Suswaini, “KLASIFIKASI PENERIMA BANTUAN RASTRA MENGGUNAKAN METODE NAIVE BAYES (Studi Kasus Desa Kuala Sempang Kabupaten Bintan),” vol. 11, no. 1, pp. 192–201, 2021.

N. S. Ermanto and Program, “Penerapan Data Mining Untuk Prediksi Penerima Bantuan Pangan Non Tunai (BPNT) Menggunakan Metode Naïve Bayes,” J. SIGMA, vol. 14, no. 2, pp. 111–116, 2023, [Online]. Available: http://jurnal.pelitabangsa.ac.id/index.php/sigma/article/view/2579%0Ahttps://jurnal.pelitabangsa.ac.id/index.php/sigma/article/download/2579/1578.

F. K. Pratama, D. W. Widodo, and N. Shofia, “Implementasi Metode Naïve Bayes dalam Mengklasifikasi Penerima Program Keluarga Harapan ( PKH ) Desa Minggiran Kediri,” Semin. Nas. Inov. Teknol. UN PGRI Kediri, pp. 23–28, 2021, [Online]. Available: https://proceeding.unpkediri.ac.id/index.php/inotek/article/view/1072%0Ahttps://proceeding.unpkediri.ac.id/index.php/inotek/article/download/1072/685.

A. Damuri, U. Riyanto, H. Rusdianto, and M. Aminudin, “Implementasi Data Mining dengan Algoritma Naïve Bayes Untuk Klasifikasi Kelayakan Penerima Bantuan Sembako,” JURIKOM (Jurnal Ris. Komputer), vol. 8, no. 6, p. 219, 2021, doi: 10.30865/jurikom.v8i6.3655.

F. A. N. A. F. S. M. D. A. Kusrini, “Sistem Pakar Diagnosa Virus Corona Dengan Metode Naïve Bayes,” J. Teknol. Inf. dan Komun., vol. 9, no. 1, p. 81, 2021, doi: 10.30646/tikomsin.v9i1.553.

Y. F. Indra Gunaawan, “Sistem Pakar Diagnosa Penyakit Kulit Kucing Menggunakan Metode Naive Bayes Berbasis Web,” J. JTIK (Jurnal Teknol. Inf. dan Komunikasi), vol. 6, no. 3, pp. 429–437, 2022, doi: 10.35870/jtik.v6i3.466.

I. D. S. Rio Al Dzahabi Yunas, Agung Triayudi, “Implementasi Sistem Pakar untuk Mendeteksi Virus Covid-19 dengan Perbandingan Metode Naïve Bayes dan Certainty Factor,” J. JTIK (Jurnal Teknol. Inf. dan Komunikasi), vol. 5, no. 3, p. 338, 2021, doi: 10.35870/jtik.v5i3.221.

F. R. A. Pratama, Styawati, and A. R. Isnain, “Rancang Bangun Aplikasi Penerimaan Siswa Baru Menggunakan Metode Web Engineering,” J. Telemat. Inf. Technol., vol. 2, no. 1, pp. 61–66, 2021.

S. Setiawansyah, H. Sulistiani, A. Sulistiyawati, and A. Hajizah, “Perancangan Sistem Pengelolaan Keuangan Komite Menggunakan Web Engineering (Studi Kasus?: SMK Negeri 1 Gedong Tataan),” Komputika J. Sist. Komput., vol. 10, no. 2, pp. 163–171, 2021, doi: 10.34010/komputika.v10i2.4329.

N. Sopiah and E. P. Agustina, “Penggunaan Metode Web Engineering Dalam Aplikasi Penjualan Kain Khas Palembang,” J. Ilm. Matrik, vol. 20, no. 2, pp. 109–118, 2019, doi: 10.33557/jurnalmatrik.v20i2.113.

C. J. Hamzah Nurrifqi Fakhri Fikrillah, Sigit Hudawiguna, “Klasifikasi Penerima Bansos Menggunakan Algoritma Naive Bayes,” JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 10, no. 1, pp. 683–695, 2023.

H. D. Wijaya and S. Dwiasnati, “Implementasi Data Mining dengan Algoritma Naïve Bayes pada Penjualan Obat,” J. Inform., vol. 7, no. 1, pp. 1–7, 2020, doi: 10.31311/ji.v7i1.6203.

F. Firdaus and A. Mukhlis, “Implementasi Algoritma Naive Bayes Pada Data Set Kualitatif Prediksi Kebangkrutan,” JURIKOM (Jurnal Ris. Komputer), vol. 7, no. 1, p. 15, 2020, doi: 10.30865/jurikom.v7i1.1757.

N. S. Fauziah and R. D. Dana, “Implementasi Algoritma Naive bayes dalam Klasifikasi Status Kesejahteraan Masyarakat Desa Gunungsari,” Blend Sains J. Tek., vol. 1, no. 4, pp. 295–305, 2023, doi: 10.56211/blendsains.v1i4.234.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Klasifikasi Data Penduduk Penerima Bantuan Pangan Non Tunai Menggunakan Algoritma Naïve Bayes

Dimensions Badge

ARTICLE HISTORY


Published: 2023-12-31
Abstract View: 135 times
PDF Download: 89 times