Klasifikasi Jenis Buah-Buahan Menggunakan Citra Digital Dengan Metode Convolutional Neural Networks
DOI:
https://doi.org/10.30865/klik.v4i3.1421Keywords:
Convolutional Neural Network; Deep Learning; Image Processing; ClassificationAbstract
The impact of the COVID-19 pandemic has been felt in changes in consumption patterns. Society and consumption patterns are inseparable, greatly people's consumption patterns that increase during the pandemic are fruits. Fruits are foods rich in vitamins that the body needs to build immunity during this pandemic. Types of fruits are grouped into 2, namely dried fruits and fleshy fruits. To make it easier for consumers to find out the image data of these types of fruit using the CNN method. Convolutional Neural Network is a deep learning algorithm designed to process data in two-dimensional form, for example images or sounds. Based on the classification results that have been carried out obtained values, namely Precision of 94% and 85%, Recall of 85% and 95%, F1-score of 90%, Macro Average of 90%, and Weighted Average of 90%, Weighted Average of 90%.
Downloads
References
A. A. Mutezar and Umniy Salamah, “Pengembangan Sistem Manajemen Event Pameran Karya Mahasiswa Menggunakan Metode Extreme Programming,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 5, no. 4, pp. 809–819, 2021, doi: 10.29207/resti.v5i4.3249.
Y. R. Jannah, S. Edwina, and A. Rifai, “Analisis Kepuasan Konsumen Berbelanja Buah Di Pasar Modern Saat Pandemi Covid-19 Di Kota Pekanbaru (Studi Kasus Jumbo Mart Delima),” SEPA J. Sos. Ekon. Pertan. dan Agribisnis, vol. 20, no. 1, p. 96, 2023, doi: 10.20961/sepa.v20i1.58485.
I. Q. Lailaty, Y. Suhendri, and M. Efendi, “Seed conservation of Begonia spp. from West Sumatra, Indonesia,” IOP Conf. Ser. Earth Environ. Sci., vol. 1192, no. 1, 2023, doi: 10.1088/1755-1315/1192/1/012002.
V. Ayumi and I. Nurhaida, “Klasifikasi Chest X-Ray Images Berdasarkan Kriteria Gejala Covid-19 Menggunakan Convolutional Neural Network,” JSAI (Journal Sci. Appl. Informatics), vol. 4, no. 2, pp. 147–153, 2021, doi: 10.36085/jsai.v4i2.1513.
V. Ayumi, I. Nurhaida, and H. Noprisson, “Implementation of Convolutional Neural Networks for Batik Image Dataset,” Int. J. Comput. Sci. Appl. Math., vol. 8, no. 1, p. 5, 2022, doi: 10.12962/j24775401.v8i1.5053.
R. I. Komaraasih, I. S. Sitanggang, Annisa, and M. A. Agmalaro, “Sentinel-1A image classification for identification of garlic plants using decision tree and convolutional neural network,” IAES Int. J. Artif. Intell., vol. 11, no. 4, pp. 1323–1332, 2022, doi: 10.11591/ijai.v11.i4.pp1323-1332.
N. Dewi and F. Ismawan, “Implementasi Deep Learning Menggunakan Cnn Untuk Sistem Pengenalan Wajah,” Fakt. Exacta, vol. 14, no. 1, p. 34, 2021, doi: 10.30998/faktorexacta.v14i1.8989.
M. M. Santoni, N. Chamidah, D. S. Prasvita, H. N. Irmanda, R. Astriratma, and R. A. Prayoga, “Penerapan Convolutional Neural Networks untuk Mesin Penerjemah Bahasa Daerah Minangkabau Berbasis Gambar,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 5, no. 6, pp. 1153–1160, 2021, doi: 10.29207/resti.v5i6.3614.
S. Yuliany, Aradea, and Andi Nur Rachman, “Implementasi Deep Learning pada Sistem Klasifikasi Hama Tanaman Padi Menggunakan Metode Convolutional Neural Network (CNN),” J. Buana Inform., vol. 13, no. 1, pp. 54–65, 2022, doi: 10.24002/jbi.v13i1.5022.
A. Tzanetos and M. Blondin, “A qualitative systematic review of metaheuristics applied to tension/compression spring design problem: Current situation, recommendations, and research direction,” Eng. Appl. Artif. Intell., vol. 118, no. October 2022, p. 105521, 2023, doi: 10.1016/j.engappai.2022.105521.
M. Fasounaki, E. B. Yüce, S. Öncül, and G. Ince, “CNN-based Text-independent Automatic Speaker Identification Using Short Utterances,” in 2021 6th International Conference on Computer Science and Engineering (UBMK), 2021, pp. 413–418. doi: 10.1109/UBMK52708.2021.9559031.
R. Prayoga, A. T. Suci, T. Kristanto, S. Lutfi, - Desyanti, and Y. Pernando, “Kombinasi Metode Multi-Objective Optimization on the Basis of Ratio Analysis (MOORA) dan Pembobotan Rank Order Centroid (ROC) dalam Pemilihan Tablet PC Terbaik,” J. Informatics Manag. Inf. Technol., vol. 3, no. 2, pp. 63–69, 2023, doi: 10.47065/jimat.v3i2.256.
A. Gultom, T. Kristanto, Y. Pernando, J. Kuswanto, N. Putra, and - Amsar, “Penerapan Metode Weighted Product dalam Penyeleksian Supervisor Terbaik,” Bull. Informatics Data Sci., vol. 2, no. 1, pp. 42–47, 2023.
N. Ramadhani, J. Hendryli, and D. E. Herwindianti, “Pencarian Objek Wisata Bersejarah Di Pulau Jawa Menggunakan Convolutional Neural Network,” J. Ilmu Komput. dan Sist. Inf., pp. 87–91, 2019.
N. W. Wulansari, “Implementasi Metode Convolutional Neural Network Untuk Deteksi Kematangan Buah Pisang Menggunakan Inception V3,” JOINS (Journal Inf. Syst., vol. 8, no. 2, pp. 147–155, 2023, doi: 10.33633/joins.v8i2.9074.
A. H. Nasrullah and H. Annur, “Implementasi Metode Convolutional Neural Network Untuk Identifikasi Citra Digital Daun,” J. Media Inform., vol. 7, no. 2, pp. 726–736, 2023, doi: 10.30865/mib.v7i2.5962.
J. E. Widyaya and S. Budi, “Pengaruh Preprocessing Terhadap Klasifikasi Diabetic Retinopathy dengan Pendekatan Transfer Learning Convolutional Neural Network,” J. Tek. Inform. dan Sist. Inf., vol. 7, no. 1, pp. 110–124, 2021, doi: 10.28932/jutisi.v7i1.3327.
M. H. Romario, E. Ihsanto, and T. M. Kadarina, “Sistem Hitung dan Klasifikasi Objek dengan Metode Convolutional Neural Network,” J. Teknol. Elektro, vol. 11, no. 2, p. 108, 2020, doi: 10.22441/jte.2020.v11i2.007.
B. Priambodo, B. Jokonowo, Samidi, A. Ahmad, and R. A. Kadir, “Predict Traffic State Based on PCA-KMeans Clustering of neighbouring roads,” in Advances in Visual Informatics. IVIC 2023, Selangor: Springer, 2023. doi: 10.1007/978-981-99-7339-2_36.
R. Munarto and A. Darma, “Klasifikasi Gender dan Usia Berdasarkan Citra Wajah Manusia Menggunakan Convolutional Neural Network,” J. Ilm. Setrum, vol. 10, no. 2, pp. 30–43, 2021, doi: 10.36055/setrum.v10i2.12991.
D. Normawati and S. A. Prayogi, “Implementasi Naïve Bayes Classifier Dan Confusion Matrix Pada Analisis Sentimen Berbasis Teks Pada Twitter,” J. Sains Komput. Inform., vol. 5, no. 2, pp. 697–711, 2021.
R. Tuntun, K. Kusrini, and K. Kusnawi, “Analisis Perbandingan Kinerja Algoritma Klasifikasi dengan Menggunakan Metode K-Fold Cross Validation,” J. Media Inform. Budidarma, vol. 6, no. 4, p. 2111, 2022, doi: 10.30865/mib.v6i4.4681.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Klasifikasi Jenis Buah-Buahan Menggunakan Citra Digital Dengan Metode Convolutional Neural Networks
ARTICLE HISTORY
Issue
Section
Copyright (c) 2023 Yuwan Jumaryadi, Alif Muhammad Ihsan, Bagus Priambodo

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).