Perbandingan Algoritma Naïve Bayes, KNN, dan Decision Tree terhadap Ulasan Aplikasi Threads dan Twitter
DOI:
https://doi.org/10.30865/klik.v4i3.1402Keywords:
Naive Bayes; KNN; Decision Tree; Confusion MatrixAbstract
Social media is a socializing activity through the internet, which has many conveniences that allow people to communicate and access information quickly. Social media is widely used to get news that is difficult to get. Social media applications are quite popular such as Twitter and recently social media that has similar features, namely Threads. Therefore, the purpose of this study is to compare 3 algorithmic methods of user-generated reviews on two applications, namely Twitter and Threads. We used 899 reviews on Twitter, with 245 positive sentiments and 654 negative sentiments, and 638 reviews on Threads, with 220 positive sentiments and 418 negative sentiments. Cleansing, preprocessing, and modeling are the steps that will be passed to process the data. In this study, split data and cross validation models were used, and the three algorithms used were Naïve Bayes, Decision Tree, and KNN, with a ratio of 80:20 for training data and test data. The accuracy value obtained for Naïve Bayes is 85.56%, Decision Tree is 72.78%, and KNN on the Twitter application, while the threads application gets 66.41% for Naïve Bayes, Decision Tree gets 65.41%, and the threads application gets 66.41%. In the Naïve Bayes algorithm, precision, recall are calculated in the Threads and Twitter applications. The Threads application gets 64.86% in precision and 73.85% in recall, while the Twitter application gets 84.69% in precision and 88.30% in recall.
Downloads
References
A. R. Abdillah and F. N. Hasan, “Analisis Sentimen Terhadap Kandidat Calon Presiden Berdasarkan Tweets Di Sosial Media Menggunakan Naive Bayes Classifier,” Smatika Jurnal, vol. 13, no. 01, pp. 117–130, 2023, doi: 10.32664/smatika.v13i01.750.
R. D. Himawan and E. Eliyani, “Perbandingan Akurasi Analisis Sentimen Tweet terhadap Pemerintah Provinsi DKI Jakarta di Masa Pandemi,” Jurnal Edukasi dan Penelitian Informatika (JEPIN), vol. 7, no. 1, p. 58, 2021, doi: 10.26418/jp.v7i1.41728.
A. Nugroho, “Analisis Sentimen Pada Media Sosial Twitter Menggunakan Naive Bayes Classifier Dengan Ekstrasi Fitur N-Gram,” J-SAKTI (Jurnal Sains Komputer dan Informatika), vol. 2, no. 2, p. 200, 2018, doi: 10.30645/j-sakti.v2i2.83.
A. D. Adhi Putra, “Analisis Sentimen pada Ulasan pengguna Aplikasi Bibit Dan Bareksa dengan Algoritma KNN,” JATISI (Jurnal Teknik Informatika dan Sistem Informasi), vol. 8, no. 2, pp. 636–646, 2021, doi: 10.35957/jatisi.v8i2.962.
D. Normawati and S. A. Prayogi, “Implementasi Naïve Bayes Classifier Dan Confusion Matrix Pada Analisis Sentimen Berbasis Teks Pada Twitter,” Jurnal Sains Komputer & Informatika (J-SAKTI, vol. 5, no. 2, pp. 697–711, 2021.
D. Ramadhan and E. B. Setiawan, “Analisis Sentimen Program Acara di SCTV pada Twitter Menggunakan Metode Naive Bayes dan Support Vector Machine,” … .Telkomuniversity.Ac.Id, vol. 6, no. 2, pp. 9736–9743, 2019, [Online]. Available: https://openlibrarypublications.telkomuniversity.ac.id/index.php/engineering/article/view/10708.
C. F. Hasri and D. Alita, “Penerapan Metode Naïve Bayes Classifier Dan Support Vector Machine Pada Analisis Sentimen Terhadap Dampak Virus Corona Di Twitter,” Jurnal Informatika dan Rekayasa Perangkat Lunak (JATIKA), vol. 3, no. 2, pp. 145–160, 2022, [Online]. Available: http://jim.teknokrat.ac.id/index.php/informatika.
R. Puspita and A. Widodo, “Perbandingan Metode KNN, Decision Tree, dan Naïve Bayes Terhadap Analisis Sentimen Pengguna Layanan BPJS,” Jurnal Informatika Universitas Pamulang, vol. 5, no. 4, pp. 646–654, 2020, doi: 10.32493/informatika.v5i4.7622.
M. I. Fikri, T. S. Sabrila, and Y. Azhar, “Perbandingan Metode Naïve Bayes dan Support Vector Machine pada Analisis Sentimen Twitter,” Smatika Jurnal, vol. 10, no. 02, pp. 71–76, 2020, doi: 10.32664/smatika.v10i02.455.
C. Cahyaningtyas, Y. Nataliani, and I. R. Widiasari, “Analisis Sentimen Pada Rating Aplikasi Shopee Menggunakan Metode Decision Tree Berbasis SMOTE,” Aiti, vol. 18, no. 2, pp. 173–184, 2021, doi: 10.24246/aiti.v18i2.173-184.
R. W. Samsir, Ambiyar, Unung Verawardina, Firman Edi, “Analisis Sentimen Pembelajaran Daring Pada Twitter di Masa Pandemi COVID-19 Menggunakan Metode Naïve Bayes,” Jurnal Media Informatika Budidarma, vol. 5, no. 1, pp. 157–163, 2021, doi: 10.30865/mib.v5i1.2604.
A. P. Giovani, A. Ardiansyah, T. Haryanti, L. Kurniawati, and W. Gata, “Analisis Sentimen Aplikasi Ruang Guru Di Twitter Menggunakan Algoritma Klasifikasi,” Jurnal Teknoinfo, vol. 14, no. 2, p. 115, 2020, doi: 10.33365/jti.v14i2.679.
E. Laia and M. Yamin, “Penerapan Algoritma Naïve Bayes dalam Menganalisis Sentimen pada Review Pengguna E-Commerce,” Media Online), vol. 4, no. 1, pp. 305–316, 2023, doi: 10.30865/klik.v4i1.1186.
R. Wahyudi and G. Kusumawardana, “Analisis Sentimen pada Aplikasi Grab di Google Play Store Menggunakan Support Vector Machine,” Jurnal Informatika, vol. 8, no. 2, pp. 200–207, 2021, doi: 10.31294/ji.v8i2.9681.
F. Setya Ananto and F. N. Hasan, “Implementasi Algoritma Naïve Bayes Terhadap Analisis Sentimen Ulasan Aplikasi MyPertamina pada Google Play Store,” Jurnal ICT?: Information Communication & Technology, vol. 23, no. 1, pp. 75–80, 2023, [Online]. Available: https://ejournal.ikmi.ac.id/index.php/jict-ikmi.
A. B. Sasmita, B. Rahayudi, and L. Muflikhah, “Analisis Sentimen Komentar pada Media Sosial Twitter tentang PPKM Covid-19 di Indonesia dengan Metode Naïve Bayes,” Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 6, no. 3, pp. 1208–1214, 2022, [Online]. Available: http://j-ptiik.ub.ac.id.
N. Hardi, Y. Alkahfi, P. Handayani, W. Gata, and M. R. Firdaus, “Analisis Sentimen Physical Distancing pada Twitter Menggunakan Text Mining dengan Algoritma Naive Bayes Classifier,” Sistemasi, vol. 10, no. 1, p. 131, 2021, doi: 10.32520/stmsi.v10i1.1118.
Ernianti Hasibuan and Elmo Allistair Heriyanto, “Analisis Sentimen Pada Ulasan Aplikasi Amazon Shopping Di Google Play Store Menggunakan Naive Bayes Classifier,” Jurnal Teknik dan Science, vol. 1, no. 3, pp. 13–24, 2022, doi: 10.56127/jts.v1i3.434.
I. Verawati and B. S. Audit, “Algoritma Naïve Bayes Classifier Untuk Analisis Sentiment Pengguna Twitter Terhadap Provider By.u,” Jurnal Media Informatika Budidarma, vol. 6, no. 3, p. 1411, 2022, doi: 10.30865/mib.v6i3.4132.
R. Slamet, W. Gata, A. Novtariany, K. Hilyati, and F. A. Jariyah, “Analisis Sentimen Twitter Terhadap Penggunaan Artis Korea Selatan Sebagai Brand Ambassador Produk Kecantikan Lokal,” INTECOMS: Journal of Information Technology and Computer Science, vol. 5, no. 1, pp. 145–153, 2022, doi: 10.31539/intecoms.v5i1.3933.
M. I. Ahmadi, D. Gustian, and F. Sembiring, “Analisis Sentiment Masyarakat terhadap Kasus Covid-19 pada Media Sosial Youtube dengan Metode Naive bayes,” Jurnal Sains Komputer & Informatika (J-SAKTI, vol. 5, no. 2, pp. 807–814, 2021.
A. Aziz, “Analisis Sentimen Identifikasi Opini Terhadap Produk, Layanan dan Kebijakan Perusahaan Menggunakan Algoritma TF-IDF dan SentiStrength,” Jurnal Sains Komputer & Informatika (J-SAKTI, vol. 6, no. 1, p. 115, 2022.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Perbandingan Algoritma Naïve Bayes, KNN, dan Decision Tree terhadap Ulasan Aplikasi Threads dan Twitter
ARTICLE HISTORY
Issue
Section
Copyright (c) 2023 Muhammad Iqbal, Ade Davy Wiranata, Rayhan Suwito, Ridha Faiz Ananda

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).