Visualisasi Decision Making MAGIQ melalui GAIA Biplot: Kasus Permohonan Paten
DOI:
https://doi.org/10.30865/klik.v4i3.1343Keywords:
MCDM; MAGIQ; IROC; GAIA; BiplotAbstract
Data visualization and Multi-criteria Decision Making (MCDM) are crucial in analyzing and interpreting complex data and supporting data-based decision-making processes. This research integrates MAGIQ, an MCDM approach, with Improved Rank Order Centroid (IROC) weighting and data visualization using the Geometrical Analysis for Interactive Aid (GAIA) biplot. This study aims to understand the relationship between criteria and alternatives in MAGIQ, facilitated by IROC weighting to interpret alternative selection. The research findings indicate that for the 'Patent Description' criterion, the IROC weight value is 0.513401, signifying the importance of this criterion in the assessment context. In the case of alternative P2, the total MAGIQ score obtained is 0.4485124, indicating that P2 is the best alternative based on the given criteria. P1 and P3 received MAGIQ scores of 0.2775665 and 0.2739211, respectively, placing them in the second and third ranks. This research implements the IROC method in MAGIQ in a systematic manner, where specific coefficients are used to calculate the weight of each criterion, and a GAIA biplot is utilized to visualize the relationship between criteria and alternatives. The practical application of this approach can be seen in patent application cases, where decision-makers can use it to evaluate complex alternatives in a more structured and data-based manner
Downloads
References
Herlinda, A. C. Bramantia, N. Kustian, Khasanah, and E. W. Ambarsari, “Applying flower venn diagram for presenting database,” IOP Conf Ser Mater Sci Eng, vol. 1088, no. 1, p. 012006, Feb. 2021, doi: 10.1088/1757-899X/1088/1/012006.
M. Ariandi and S. Rahma Puteri, “Analisis Visualisasi Data Kecamatan Kertapati menggunakan Tableau Public,” Jurnal Jupiter, vol. 14, no. 2, pp. 366–373, 2022.
R. Tanoto, L. C. Khoe, and R. A. Werdhani, “Mata-Data: Data visualization in approaching evidence-based health policy,” ASEAN Journal of Community Engagement, vol. 3, no. 1, pp. 163–174, Jul. 2019, doi: 10.7454/ajce.v3i1.145.
E. W. Ambarsari, A. A. R. Awaludin, A. Suryana, P. M. Hartuti, and R. Rahim, “Basic concept Pythagoras tree for construct data visualization on decision tree learning,” Journal of Applied Engineering Science, vol. 17, no. 4, pp. 468–472, 2019, doi: 10.5937/jaes17-21960.
R. R. Purba, M. Mesran, M. T. A. Zaen, S. Setiawansyah, D. Siregar, and E. W. Ambarsari, “Decision Support System in the Best Selection Coffee Shop with TOPSIS Method,” The IJICS (International Journal of Informatics and Computer Science), vol. 7, no. 1, p. 28, Mar. 2023, doi: 10.30865/ijics.v7i1.6157.
R. Rahim et al., “TOPSIS Method Application for Decision Support System in Internal Control for Selecting Best Employees,” J Phys Conf Ser, vol. 1028, no. 1, p. 012052, 2018, doi: 10.1088/1742-6596/1028/1/012052.
M. Guntur and R. Yanto, “Penerapan Metode SMART untuk Seleksi Kelayakan Penerima Bantuan Pengembangan Usaha Pangan Masyarakat,” Telematika, vol. 12, no. 2, pp. 149–159, Aug. 2019, doi: 10.35671/telematika.v12i2.826.
L. N. Sukaryati and A. Voutama, “Penerapan Metode Simple Additive Weighting Pada Sistem Pendukung Keputusan Untuk Memilih Karyawan Terbaik,” Jurnal Ilmiah MATRIK, vol. 24, no. 3, pp. 260–267, 2022.
A. Oktafiawan Nugroho and R. Budhiati Veronica, “Penerapan Metode AHP sebagai Sistem Pendukung Keputusan Pemilihan Tempat Kerja,” UNNES Journal of Mathematics., vol. 10, no. 1, pp. 47–54, 2021, [Online]. Available: http://journal.unnes.ac.id/sju/index.php/ujm
G. Sekoh, R. L. Inkiriwang, and J. Tjakra, “Analisis Pemilihan Rumah Di Beberapa Lokasi Perumahan Dengan Metode AHP (Analytical Hierarchy Process),” TEKNO, vol. 21, no. 84, pp. 609–616, 2023.
L. Sunarmintyastuti, D. Katarina, E. W. Ambarsari, and D. Fathudin, “Kriteria Nilai Produk Game Edukasi Mahasiswa Universitas Darma Persada dengan Metode MAGIQ,” in Seminar Nasional Riset dan Inovasi Teknologi (SEMNAS RISTEK) 2019, 2019, pp. 327–333.
E. Ambarsari, H. Herlinda, A. Daengs GS, R. Prasetya, and H. Herfina, “Usability of Parental Control Application Features To Protect Children From Negative Internet Impact By Using MAGIQ Approach (Case Study In Indonesia),” in The 1st International Conference on Computer Science and Engineering Technology Universitas Muria Kudus, 2019, pp. 399–405. doi: 10.4108/eai.24-10-2018.2280591.
Y. A. Prasetyo, H. Rosyid, and P. A. Rakhma Devi, “Implementasi Metode SAW dengan Pembobotan ROC dalam Menentukan Teknisi Terbaik pada PT. KAS,” ILKOMNIKA: Journal of Computer Science and Applied Informatics, vol. 4, no. 3, pp. 316–326, 2022, doi: 10.28926/ilkomnika.v4i3.524.
S. Suryadi et al., “Uji Sensitivitas Metode Pembobotan ROC, SWARA Terhadap Kriteria Karyawan Terbaik Dengan Menggunakan Metode SAW,” Journal of Information System Research (JOSH), vol. 3, no. 4, pp. 532–540, Jul. 2022, doi: 10.47065/josh.v3i4.1952.
S. Damanik and P. D. Utomo, “Implementasi Metode ROC (Rank Order Centroid) Dan Waspas Dalam Sistem Pendukung Keputusan Pemilihan Kerjasama Vendor,” KOMIK (Konferensi Nasional Teknologi Informasi dan Komputer), vol. 4, no. 1, pp. 242–248, 2020, doi: 10.30865/komik.v4i1.2690.
M. A. Hatefi, “An Improved Rank Order Centroid Method (IROC) for Criteria Weight Estimation: An Application in the Engine/Vehicle Selection Problem,” Informatica, vol. 34, no. 2, pp. 249–270, 2023, doi: 10.15388/23-INFOR507.
C. L. B. e Matos, S. H. A. C. Forte, and S. A. B. Forte, “Metodologia de avaliação organizacional de universidades corporativas,” Revista de Administração da UFSM, vol. 13, no. 4, pp. 709–727, Oct. 2020, doi: 10.5902/1983465932836.
F. Nadeem, “A Unified Framework for User-Preferred Multi-Level Ranking of Cloud Computing Services Based on Usability and Quality of Service Evaluation,” IEEE Access, vol. 8, pp. 180054–180066, 2020, doi: 10.1109/ACCESS.2020.3027775.
V. Rahman, E. Windia Ambarsari, and F. Rastic Andrari, “Pemenuhan Persyaratan Permohonan Paten dengan Metode Multi-Attribute Global Inference of Quality (MAGIQ),” TIN: Terapan Informatika Nusantara, vol. 4, no. 1, pp. 45–51, 2023, doi: 10.47065/tin.v4i1.4207.
R. Watrianthos, R. Handayani, W. Simatupang, D. Irfan, and M. Muskhir, “Penerapan Metode PROMETHEE-GAIA Dalam Pemeringkatan Perguruan Tinggi di Indonesia,” JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 6, no. 1, p. 138, Jan. 2022, doi: 10.30865/mib.v6i1.3419.
G. Ozkaya, M. Timor, and C. Erdin, “Science, Technology and Innovation Policy Indicators and Comparisons of Countries through a Hybrid Model of Data Mining and MCDM Methods,” Sustainability, vol. 13, no. 2, p. 694, Jan. 2021, doi: 10.3390/su13020694.
I. R. Mangangka, A. Liu, P. Egodawatta, and A. Goonetilleke, “Sectional analysis of stormwater treatment performance of a constructed wetland,” Ecol Eng, vol. 77, pp. 172–179, Apr. 2015, doi: 10.1016/j.ecoleng.2015.01.028.
G. Ozkaya and A. Demirhan, “Analysis of Countries in Terms of Artificial Intelligence Technologies: PROMETHEE and GAIA Method Approach,” Sustainability (Switzerland), vol. 15, no. 5, Mar. 2023, doi: 10.3390/su15054604.
A. V. Christian, Y. Zhang, and C. Salifou, “Application of PROMETHEE-GAIA Method in the Entry Mode Selection Process in International Market Expansion,” Open Journal of Business and Management, vol. 04, no. 02, pp. 238–250, 2016, doi: 10.4236/ojbm.2016.42025.
F. Saputra, A. Bakar, and F. H. Mustofa, “Usulan Penentuan Prioritas Supplier Bahan Baku Plate Steel dengan Metode PROMETHEE di PT Dirgantara Indonesia (PERSERO),” Jurnal Online Institut Teknologi Nasional Januari, vol. 4, no. 1, 2016.
P. Bari and P. Karande, “Application of PROMETHEE-GAIA method to priority sequencing rules in a dynamic job shop for single machine,” Mater Today Proc, vol. 46, pp. 7258–7264, 2021, doi: 10.1016/j.matpr.2020.12.854.
E. S. A. S. Agustin, R. Martini, and B. Setiyono, “Evaluating rural tourism competitiveness: Application of PROMETHEE-GAIA method,” Cogent Economics & Finance, vol. 10, no. 1, Dec. 2022, doi: 10.1080/23322039.2022.2054526.
A. Anas M. Yatim, “the Tourism Destination Competitiveness: Using the PROMETHEE GAIA Model,” Economica, vol. 9, no. 1, pp. 66–85, Oct. 2020, doi: 10.22202/economica.2020.v9.i1.4063.
J. D. McCaffrey, “Using the Multi-Attribute Global Inference of Quality (MAGIQ) Technique for Software Testing,” in 2009 Sixth International Conference on Information Technology: New Generations, IEEE, 2009, pp. 738–742. doi: 10.1109/ITNG.2009.81.
J. Bisgard, Analysis and Linear Algebra: The Singular Value Decomposition and Applications. 2021.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Visualisasi Decision Making MAGIQ melalui GAIA Biplot: Kasus Permohonan Paten
ARTICLE HISTORY
Issue
Section
Copyright (c) 2023 Erlin Windia Ambarsari, Sri Melati Sagita, Dudi Parulian

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).