Analisis Sentimen Terhadap Penerapan Sistem E-Tilang Pada Media Sosial Twitter Menggunakan Algoritma Support Vector Machine (SVM)
DOI:
https://doi.org/10.30865/klik.v4i1.1040Keywords:
Text Mining; Sentiment Analysis; Twitter; Python; e-Tilang; SVMAbstract
The e-Tilang system is a solution to disciplining motorized vehicle drivers from committing many traffic violations. The existence of e-Tilang is also a solution to preventing law enforcer delinquency from illegal levies, peaceful terms in place, to accountability for fines. The effectiveness and efficiency of the e-Tilang system raise various comments from the public. Lately, a technique has become popular for extracting information from piles of data, especially on Twitter, namely Text Mining or often also called sentiment analysis. Twitter is a type of social media that is quite popular and in demand by the whole world community, including Indonesia, which provides various information. Support Vector Machine (SVM) is a set of guided learning methods that analyze data and recognize patterns, is used for classification and regression analysis, and is considered a relatively new method. The purpose of this study was to analyze the sentiments of Twitter users regarding the implementation of the e-Tilang system using the Support Vector Machine (SVM) algorithm by calculating the value of the tweet data which has a yield of 74.20%, precision of 83.33% and recall of 5.28%. Sentiment results on social media Twitter regarding the implementation of e-tickets are classified as neutral. From the results of research using the Support Vector Machine (SVM) algorithm the results of sentiment on social media Twitter regarding the implementation of e-Tilang are classified as neutral.
Downloads
References
N. Legiawati, T. I. Hermanto, and Y. R. Ramadhan, “Analisis Sentimen Opini Pengguna Twitter Terhadap Perusahaan Jasa Ekspedisi Menggunakan Algoritma Naïve Bayes Berbasis PSO,” vol. 9, no. 4, pp. 930–937, 2022, doi: 10.30865/jurikom.v9i4.4629.
A. D. Pangestu, I. E. S. Kom, M. Si, N. C. S. Kom, and M. Kom, “Analisis Sentimen Terhadap Ppkm Darurat Pada Media Sosial Twitter Menggunakan Metode Naïve Bayes Dengan Seleksi Fitur Information Gain,” pp. 825–834, 2022.
R. Parlika, S. I. Pradika, A. M. Hakim, and K. R. N M, “Analisis Sentimen Twitter Terhadap Bitcoin Dan Cryptocurrency Berbasis Python Textblob,” J. Ilm. Teknol. Inf. dan Robot., vol. 2, no. 2, pp. 33–37, 2020, doi: 10.33005/jifti.v2i2.22.
R. A. Raharjo, I. Made, G. Sunarya, D. Gede, and H. Divayana, “Perbandingan Metode Naïve Bayes Classifier Dan Support Vector Machine Pada Kasus Analisis Sentimen Terhadap Data Vaksin Covid-19 Di Twitter,” J. Ilm. Elektron. Dan Komput., vol. 15, no. 2, pp. 456–464, 2022, [Online]. Available: http://journal.stekom.ac.id/index.php/elkom?page456
F. A. Abdullah and F. Windiyastuti, “Electronic Traffic Law Enforcement ( ETLE ) sebagai Digitalisasi Proses Tilang,” J. Kewarganegaraan, vol. 6, no. 2, pp. 3004–3008, 2022.
R. Khalida and S. Setiawati, “Analisis Sentimen Sistem E-Tilang Menggunakan Algoritma Naive Bayes Dengan Optimalisasi Information Gain,” J. Inform. Inf. Secur., vol. 1, no. 1, pp. 19–26, 2020, doi: 10.31599/jiforty.v1i1.137.
I. P. Ninditama, I. P. Ninditama, W. Cholil, M. Akbar, and D. Antoni, “Klasifikasi Keluarga Sejahtera Study Kasus?: Kecamatan Kota Palembang,” vol. 15, no. 2, pp. 37–49, 2020.
Y. Rahman, “Penerapan machine learning dalam e-commerce perusahaan bukalapak,” no. 11180930000049, pp. 1–9, 2018.
A. Hasiholan, I. Cholissodin, and N. Yudistira, “Analisis Sentimen Tweet Covid-19 Varian Omicron pada Platform Media Sosial Twitter menggunakan Metode LSTM berbasis Multi Fungsi Aktivasi dan GLOVE,” vol. 6, no. 10, pp. 4653–4661, 2022, [Online]. Available: http://j-ptiik.ub.ac.id
S. M. Tambunan, Y. Nataliani, and E. S. Lestari, “Perbandingan Klasifikasi dengan Pendekatan Pembelajaran Mesin untuk Mengidentifikasi Tweet Hoaks di Media Sosial Twitter,” J. Edukasi dan Penelit. Inform., vol. 7, no. 2, p. 112, 2021, doi: 10.26418/jp.v7i2.47232.
A. C. Najib, A. Irsyad, G. A. Qandi, and N. A. Rakhmawati, “Perbandingan Metode Lexicon-based dan SVM untuk Analisis Sentimen Berbasis Ontologi pada Kampanye Pilpres Indonesia Tahun 2019 di Twitter,” Fountain Informatics J., vol. 4, no. 2, p. 41, 2019, doi: 10.21111/fij.v4i2.3573.
M. K. Rahmadhika and A. M. Thantawi, “Rancang Bangun Aplikasi Face Recognition Pada Pendekatan CRM Menggunakan Opencv Dan Algoritma Haarcascade,” IKRA-ITH Inform. J. Komput. dan Inform., vol. 5, no. 1, pp. 109–118, 2021.
I. Kurniawan, “Klasifikasi Opini Masyarakat Di Twitter Tentang Kebocoran Data Yang Terjadi Di Indonesia,” J. Inform. Kaputama, vol. 7, no. 1, pp. 1–7, 2023.
D. S. Utami and A. Erfina, “Analisis Sentimen Pinjaman Online di Twitter Menggunakan Algoritma Support Vector Machine (SVM),” SISMATIK (Seminar Nas. Sist. Inf. dan Manaj. Inform., vol. 1, no. 1, pp. 299–305, 2021.
I. A. Ropikoh, R. Abdulhakim, U. Enri, and N. Sulistiyowati, “Penerapan Algoritma Support Vector Machine (SVM) untuk Klasifikasi Berita Hoax Covid-19,” J. Appl. Informatics Comput., vol. 5, no. 1, pp. 64–73, 2021, doi: 10.30871/jaic.v5i1.3167.
M. R. Andryan, M. Fajri, and N. Sulistyowati, “Komparasi Kinerja Algoritma Xgboost Dan Algoritma Support Vector Machine (Svm) Untuk Diagnosis Penyakit Kanker Payudara,” JIKO (Jurnal Inform. dan Komputer), vol. 6, no. 1, p. 1, 2022, doi: 10.26798/jiko.v6i1.500.
A. Asroni, H. Fitri, and E. Prasetyo, “Penerapan Metode Clustering dengan Algoritma K-Means pada Pengelompokkan Data Calon Mahasiswa Baru di Universitas Muhammadiyah Yogyakarta (Studi Kasus: Fakultas Kedokteran dan Ilmu Kesehatan, dan Fakultas Ilmu Sosial dan Ilmu Politik),” Semesta Tek., vol. 21, no. 1, pp. 60–64, 2018, doi: 10.18196/st.211211.
E. Suryati and A. A. Aldino, “Analisis Sentimen Transportasi Online Menggunakan Ekstraksi Fitur Model Word2vec Text Embedding Dan Algoritma Support Vector Machine ( SVM ),” vol. 4, no. 1, pp. 96–106, 2023.
R. Ferdiana, F. Jatmiko, D. D. Purwanti, A. S. T. Ayu, and W. F. Dicka, “Dataset Indonesia untuk Analisis Sentimen,” J. Nas. Tek. Elektro dan Teknol. Inf., vol. 8, no. 4, p. 334, 2019, doi: 10.22146/jnteti.v8i4.533.
Y. Nurtikasari, Syariful Alam, and Teguh Iman Hermanto, “Analisis Sentimen Opini Masyarakat Terhadap Film Pada Platform Twitter Menggunakan Algoritma Naive Bayes,” INSOLOGI J. Sains dan Teknol., vol. 1, no. 4, pp. 411–423, 2022, doi: 10.55123/insologi.v1i4.770.
A. Rahman Isnain, A. Indra Sakti, D. Alita, and N. Satya Marga, “Sentimen Analisis Publik Terhadap Kebijakan Lockdown Pemerintah Jakarta Menggunakan Algoritma Svm,” Jdmsi, vol. 2, no. 1, pp. 31–37, 2021, [Online]. Available: https://t.co/NfhnfMjtXw
R. Mahendrajaya, G. A. Buntoro, and M. B. Setyawan, “Analisis Sentimen Pengguna Gopay Menggunakan Metode Lexicon Based Dan Support Vector Machine,” Komputek, vol. 3, no. 2, p. 52, 2019, doi: 10.24269/jkt.v3i2.270.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Analisis Sentimen Terhadap Penerapan Sistem E-Tilang Pada Media Sosial Twitter Menggunakan Algoritma Support Vector Machine (SVM)
ARTICLE HISTORY
Issue
Section
Copyright (c) 2023 Dea Oktavia, Yudhi Raymond Ramadahan, Minarto Minarto

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).