Analisis Sentimen Ulasan Pelanggan Pada Aplikasi Fore Coffee Menggunakan Metode Naïve Bayes
DOI:
https://doi.org/10.30865/klik.v3i6.884Keywords:
Sentiment; Review; Naïve Bayes; Fore CoffeeAbstract
Evolution of the coffee shop enterprise in Indonesia is progressing rapidly, because coffee consumption in Indonesia continues increasing every year. In selecting the application to be used usually consider security, convenience and many promotions. But some users are still hesitant in using an application because some of the reviews are displayed, then from that problem a research is carried out using sentiment analysis to produce a classification on customer satisfaction with fore coffee using the Naïve Bayes Algorithm. The stages of this research consist of collecting data from web scraping, data preprocessing, The utilization of TF-IDF data weighting, coupled with the successful deployment of the Naive Bayes algorithm, leads to a heightened level of precision while ensuring a straightforward and prompt workflow. Results of data processing and application of algorithms. Process results data processing carried out there are 1801 data, the highest number of sentiments is positive sentiment of 1163 and 315 negative sentiments. This shows that from 1801 data comments that users the fore coffee application likes the services provided by the fore coffee baristas, but there are also the community who don't like the waiter given by the barista. The accuracy value that has been obtained after processed using the naïve Bayes algorithm, a percentage of 74.28% is obtained which can be seen that the data can be used as a basis for fore coffee in considering decision making.
Downloads
References
K. A. Prajasantana, A. B. D. Mardiartmi, and J. G. Argo, “Analisis Keputusan Pembelian Konsumen Fore Coffee Senopati (Studi Pada Masa Pandemi Covid-19),” J. EMBA J. Ris. Ekon. Manajemen, Bisnis dan Akunt., vol. 2, pp. 187–200, 2021.
S. K. Wijayati, W. H. Fahleti, and J. Arianto, “PENGARUH GAYA HIDUP, KONSEP DIRI, KELAS SOSIAL DAN HARGA TERHADAP KEPUTUSAN KONSUMEN BERKUNJUNG KE KEDAI KOPI (Studi Kasus Pada Kedai Kopi XYZ di Samarinda),” Res. J. Account. Bus. Manag., vol. 3, no. 2, p. 255, 2019, doi: 10.31293/rjabm.v3i2.4427.
M. H. Gifari and B. D. M, “ANALISIS KEUNGGULAN BERSAING KOPI KENANGAN DI KEDAI KOPI FASE 1 TOP BRAND INDEXS,” vol. 2, no. 1, pp. 789–805, 2021.
S. E. E. Profile, “International Encyclopedia of Statistical Science,” Int. Encycl. Stat. Sci., no. April, 2011, doi: 10.1007/978-3-642-04898-2.
M. S. Putri and J. Heikal, “Analisis Kualitatif Terhadap Kepuasan dan Loyalitas Pelanggan Kedai Kopi Gayo Menggunakan Metode Grounded Theory,” J. Inform. Ekon. Bisnis, vol. 5, pp. 26–31, 2023, doi: 10.37034/infeb.v5i1.192.
V. Lehdonvirta, A. Oksanen, P. Räsänen, and G. Blank, “Social Media, Web, and Panel Surveys: Using Non-Probability Samples in Social and Policy Research,” Policy and Internet, vol. 13, no. 1, pp. 134–155, 2021, doi: 10.1002/poi3.238.
K. Suisa and V. Febrilia, “Gaya hidup minum kopi konsumen di,” Perhotelan, Manaj. Petra, Univ. Kristen, vol. Vol 2 no 2, pp. 326–343, 2014.
S. tjondro winarno Winarno, A. Cahyono Suminar, and E. Nurhadi, “Pengaruh Strategi Inovasi Startup (Futuristik, Ramah Lingkungan, Dan Keunggulan Kualitas) Fore Coffee Terhadap Kepuasan Konsumen,” J. Food Syst. Agribus., vol. 5, no. 1, pp. 48–53, 2021, doi: 10.25181/jofsa.v5i1.1962.
K. Anwar, “Analisa sentimen Pengguna Instagram Di Indonesia Pada Review Smartphone Menggunakan Naive Bayes,” KLIK Kaji. Ilm. Inform. dan Komput., vol. 2, no. 4, pp. 148–155, 2022, doi: 10.30865/klik.v2i4.315.
W. Wahyuni, “Analisis Sentimen terhadap Opini Feminisme Menggunakan Metode Naive Bayes,” J. Inform. Ekon. Bisnis, vol. 4, pp. 148–153, 2022, doi: 10.37034/infeb.v4i4.162.
W. Yulita, E. D. Nugroho, and M. H. Algifari, “Analisis Sentimen Terhadap Opini Masyarakat Tentang Vaksin Covid - 19 Menggunakan Algoritma Naïve Bayes Classifier,” vol. 2, no. 2, pp. 1–9, 2021.
M. Ismail, N. Hassan, and S. Saleh Bafjaish, “Journal of Soft Computing and Data Mining Comparative Analysis of Naive Bayesian Techniques in Health-Related for Classification Task,” J. Soft Comput. Data Min., vol. 1, no. 2, pp. 1–10, 2020, [Online]. Available: http://penerbit.uthm.edu.my/ojs/index.php/jscdm
Y. A. Singgalen, “Analisis Sentimen Wisatawan Melalui Data Ulasan Candi Borobudur di Tripadvisor Menggunakan Algoritma Naïve Bayes Classifier,” Build. Informatics, Technol. Sci., vol. 4, no. 3, p. 1343?1352, 2022, doi: 10.47065/bits.v4i3.2486.
E. Fitri, “Analisis Sentimen Terhadap Aplikasi Ruangguru Menggunakan Algoritma Naive Bayes, Random Forest Dan Support Vector Machine,” J. Transform., vol. 18, no. 1, p. 71, 2020, doi: 10.26623/transformatika.v18i1.2317.
D. A. Ramadhan, E. Budi, and S. S. Si, “ANALISIS SENTIMEN PROGRAM ACARA DI SCTV PADA TWITTER MENGGUNAKAN METODE NAIVE BAYES DAN SUPPORT VECTOR MACHINE,” vol. 6, no. 2, pp. 9736–9743, 2019.
I. Verawati and B. S. Audit, “Algoritma Naïve Bayes Classifier Untuk Analisis Sentiment Pengguna Twitter Terhadap Provider By.u,” J. Media Inform. Budidarma, vol. 6, no. 3, p. 1411, 2022, doi: 10.30865/mib.v6i3.4132.
R. Slamet, W. Gata, A. Novtariany, K. Hilyati, F. Ainun Jariyah, and U. Nusa Mandiri, “Twitter Sentiment Analysis of South Korea Artists As Brand Ambassadors of Local Beauty Products,” J. Inf. Technol. Comput. Sci., vol. 5, no. 1, 2022.
R. Kustiawan, A. Adiwijaya, and M. D. Purbolaksono, “A Multi-label Classification on Topic of Hadith Verses in Indonesian Translation using CART and Bagging,” J. Media Inform. Budidarma, vol. 6, no. 2, p. 868, 2022, doi: 10.30865/mib.v6i2.3787.
M. I. Ahmadi, D. Gustian, and F. Sembiring, “Analisis Sentiment Masyarakat terhadap Kasus Covid-19 pada Media Sosial Youtube dengan Metode Naive bayes,” J. Sains Komput. Inform. (J-SAKTI, vol. 5, no. 2, pp. 807–814, 2021.
A. Aziz, “Analisis Sentimen Identifikasi Opini Terhadap Produk, Layanan dan Kebijakan Perusahaan Menggunakan Algoritma TF-IDF dan SentiStrength,” J. Sains Komput. Inform. (J-SAKTI, vol. 6, no. 1, p. 115, 2022.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Analisis Sentimen Ulasan Pelanggan Pada Aplikasi Fore Coffee Menggunakan Metode Naïve Bayes
ARTICLE HISTORY
Issue
Section
Copyright (c) 2023 Tia Anggita Sari, Firman Noor Hasan , Estu Sinduningrum

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).