Komparasi Performa Naive Bayes Gaussian dan K-NN Untuk Prediksi Kelulusan Mahasiswa dengan CRISP-DM
DOI:
https://doi.org/10.30865/klik.v4i6.1924Keywords:
Student Graduation Prediction; Naive Bayes Gaussian; k-nn; CRISP-DM; Data Mining; ClassificationAbstract
Predicting student graduation is a crucial aspect to assess the quality and credibility of higher education institutions. Naive Bayes and K-NN algorithms have been recognised for their effectiveness in predicting graduation. However, most of these studies are limited to academic data. Meanwhile, the variables of thesis completion duration and thesis start time are rarely studied. This study aims to compare the performance of Naive Bayes Gaussian and K-NN algorithms in predicting student graduation using the CRISP-DM method. The data used in this research is the data of students of informatics study programme of Magelang muhammadiyah university. Unlike previous studies that only rely on academic data such as ipk, gender, age, marital status, employment status, and stress level. This research includes the duration of thesis completion and thesis start time as key variables. To compare the performance of Naive Bayes Gaussian and K-NN algorithms, this study adopted three data sharing scenarios: scenario 1 60% training data 40% testing data, scenario 2 70% training data 30% testing data, and scenario 3 80% training data 20% testing data. The results showed that the K-NN algorithm in scenario 2 showed the highest accuracy reaching 91% with precision, recall, and f1-score values of 83.5%, 87.5%, and 85.5%, respectively. On the other hand, Naive Bayes Gaussian reached a maximum accuracy of 88% in Scenario 1 with precision, recall, and f1-score reaching 93%, 77.5%, and 82%, respectively. The research findings show that the K-NN algorithm is superior in predicting student graduation compared to Naive Bayes Gaussian.
Downloads
References
S. Widaningsih, “Perbandingan Metode Data Mining Untuk Prediksi Nilai Dan Waktu Kelulusan Mahasiswa Prodi Teknik Informatika Dengan Algoritma C4,5, Naïve Bayes, Knn Dan Svm,” J. Tekno Insentif, vol. 13, no. 1, pp. 16–25, 2019, doi: 10.36787/jti.v13i1.78.
T. Guo et al., “Graduate Employment Prediction with Bias,” Proc. AAAI Conf. Artif. Intell., vol. 34, no. 01, pp. 670–677, Apr. 2020, doi: 10.1609/aaai.v34i01.5408.
P. S. Wijayanti and E. Setiawati, “Pelatihan dan Pendampingan Employability Skill Siswa SMK sebagai Kesiapan Kerja di Era 4.0,” Bubungan Tinggi J. Pengabdi. Masy., vol. 5, no. 1, p. 114, Feb. 2023, doi: 10.20527/btjpm.v5i1.6841.
R. Marbun, “Implementasi Data Mining Untuk Memprediksi Kelulusan Mahasiswa Menggunakan Algoritma Naive Bayes Classifier Studi Kasus: Poltekkes Kemenkes RI Medan,” JURIKOM (Jurnal Ris. Komputer), 2020.
J. Zeniarja, A. Salam, and F. A. Ma’ruf, “Seleksi Fitur dan Perbandingan Algoritma Klasifikasi untuk Prediksi Kelulusan Mahasiswa,” J. Rekayasa Elektr., 2022.
E. F. and M. A. H. Ian H. Witten, Data Mining: Practical Machine Learning Tools and Techniques. Elsevier, 2011. doi: 10.1016/C2009-0-19715-5.
H. Yang et al., “Data mining techniques on astronomical spectra data – II. Classification analysis,” Mon. Not. R. Astron. Soc., vol. 518, no. 4, pp. 5904–5928, Dec. 2022, doi: 10.1093/mnras/stac3292.
W. Wiguna and D. Riana, “DIAGNOSIS OF CORONAVIRUS DISEASE 2019 (COVID-19) SURVEILLANCE USING C4.5 ALGORITHM,” J. Pilar Nusa Mandiri, vol. 16, no. 1, pp. 71–80, Mar. 2020, doi: 10.33480/pilar.v16i1.1293.
A. Anwarudin, W. Andriyani, B. P. DP, and D. Kristomo, “The Prediction on the Students’ Graduation Timeliness Using Naive Bayes Classification and K-Nearest Neighbor,” J. Intell. Softw. Syst., vol. 1, no. 1, p. 75, Jul. 2022, doi: 10.26798/jiss.v1i1.597.
A. Salam, J. Zeniarja, and D. M. Anthareza, “Student Graduation Prediction Model using Deep Learning Convolutional Neural Network (CNN),” in 2022 International Seminar on Application for Technology of Information and Communication (iSemantic), IEEE, Sep. 2022, pp. 362–366. doi: 10.1109/iSemantic55962.2022.9920449.
D. L. Wibisono and Z. Abidin, “Prediction of Student Graduation Predicts using Hybrid 2D Convolutional Neural Network and Synthetic Minority Over-Sampling Technique,” Recursive J. Informatics, vol. 1, no. 1, pp. 27–34, Mar. 2023, doi: 10.15294/rji.v1i1.65646.
D. Safitri, S. S. Hilabi, and F. Nurapriani, “Analisis Penggunaan Algoritma Klasifikasi Dalam Prediksi Kelulusan Menggunakan Orange Data Mining,” Rabit J. Teknol. dan Sist. Inf. Univrab, vol. 8, no. 1, pp. 75–81, 2023, doi: 10.36341/rabit.v8i1.3009.
V. Atina and N. A. Sudibyo, “PEMODELAN PREDIKSI KELULUSAN MAHASISWA DENGAN METODE NAÏVE BAYES DI UNIBA,” J. Manaj. Inform. …, 2023.
G. A. Panharesi, “Klasifikasi Waktu Penyelesaian Skripsi Mahasiswa Menggunakan Metode Weighted Naïve Bayes (Studi Kasus: Program Studi Teknik Informatika Universitas Muhammadiyah Gresik),” Indexia, vol. 4, no. 1, p. 33, Jun. 2022, doi: 10.30587/indexia.v4i1.3589.
G. Kurniawati and N. U. Maulidevi, “Multivariate Sequential Modelling for Student Performance and Graduation Prediction,” in 2022 9th International Conference on Information Technology, Computer, and Electrical Engineering (ICITACEE), IEEE, Aug. 2022, pp. 293–298. doi: 10.1109/ICITACEE55701.2022.9923971.
H. Yuliansyah, R. A. P. Imaniati, A. Wirasto, and M. Wibowo, “Predicting Students Graduate on Time Using C4.5 Algorithm,” J. Inf. Syst. Eng. Bus. Intell., vol. 7, no. 1, p. 67, Apr. 2021, doi: 10.20473/jisebi.7.1.67-73.
Huifang Zeng and Ding Pan, “A knowledge discovery and data mining process model in E-marketing,” in 2010 8th World Congress on Intelligent Control and Automation, IEEE, Jul. 2010, pp. 3960–3964. doi: 10.1109/WCICA.2010.5553834.
S. Xu, “Bayesian Naïve Bayes classifiers to text classification,” J. Inf. Sci., vol. 44, no. 1, pp. 48–59, Feb. 2018, doi: 10.1177/0165551516677946.
R. A. Permana and S. Sahara, “Algoritma K-Nearest Neighbor Pada Analisa Sentimen Review Produk Router,” SIMKOM, vol. 8, no. 2, pp. 118–124, Jul. 2023, doi: 10.51717/simkom.v8i2.129.
H. Fatma, E. Haerani, F. Syafria, and E. Budianita, “Implementation of K-Nearest Neighbor (K-NN) Algorithm For Public Sentiment Analysis of Online Learning,” J. Inform. Univ. Pamulang, vol. 8, no. 2, pp. 139–144, 2023, doi: 10.32493/informatika.v8i2.30054.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Komparasi Performa Naive Bayes Gaussian dan K-NN Untuk Prediksi Kelulusan Mahasiswa dengan CRISP-DM
ARTICLE HISTORY
Issue
Section
Copyright (c) 2024 Rosyid Mubarak, Mukhtar Hanafi, Dimas Sasongko
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).