Klasifikasi Penyakit Pada Daun Tanaman Padi Berbasis YoloV5 (You Only Look Once)


Authors

  • Aditia Putra Pranjaya Universitas Bina Insan, Lubuklinggau, Indonesia
  • Fido Rizki Universitas Bina Insan, Lubuklinggau, Indonesia
  • Rudi Kurniawan Universitas Bina Insan, Lubuklinggau, Indonesia
  • Nelly Khairani Daulay Universitas Bina Insan, Lubuklinggau, Indonesia

DOI:

https://doi.org/10.30865/klik.v4i6.1916

Keywords:

Rice Leaf Disease; Computer Vision; Yolov5; Roboflow; Webcam

Abstract

The rise of disease attacks on plant leaves causes huge losses for farmers, especially rice farmers. Lack of knowledge in identifying the symptoms of disease in rice plants can cause farmers to have difficulty in dealing with diseases that attack their rice plants, causing errors in handling diseases in rice plants that result in crop failure. When looking at the facts that occur today, it is very necessary to have a technology that can be used to recognise diseases in rice plants, so that it can help rice farmers in recognising a symptom of a disease that attacks their rice plants. With the application of computer vision using the YOLOv5 algorithm, we can create an introduction system related to diseases in rice plants based on the type of disease. In the process of applying the YOLOv5 algorithm, we will collect as many as 1500 images of 2 types of diseases and 1 type of normal rice leaves and each class we collect 500 images, and divide the data into 3 parts, the percentage of which is 70% for train data, 20% for valid data and 10% for test data and this process we do in Roboflow for image labelling and dataset creation. We will process the dataset from roboflow using the YOLOv5 algorithm. Based on the model evaluation results, the highest value of mAP 95%, precision 88%, recall 100% is obtained. The last stage is testing the system in real-time with a webcam and producing a test accuracy value in the Narrow Brown Spot class of 93%, in the Leaf Blight class of 81%, and Normal Rice Leaves 91%.

Downloads

Download data is not yet available.

References

S. Yuliany, Aradea, and Andi Nur Rachman, “Implementasi Deep Learning pada Sistem Klasifikasi Hama Tanaman Padi Menggunakan Metode Convolutional Neural Network (CNN),” J. Buana Inform., vol. 13, no. 1, pp. 54–65, 2022, doi: 10.24002/jbi.v13i1.5022.

D. Putri Ayuni, Jasril, M. Irsyad, F. Yanto, and S. Sanjaya, “Augmentasi Data Pada Implementasi Convolutional Neural Network Arsitektur Efficientnet-B3 Untuk Klasifikasi Penyakit Daun Padi,” Zo. J. Sist. Inf., vol. 5, no. 2, pp. 239–249, 2023, doi: 10.31849/zn.v5i2.13874.

E. Anggiratih, S. Siswanti, S. K. Octaviani, and A. Sari, “Klasifikasi Penyakit Tanaman Padi Menggunakan Model Deep Learning Efficientnet B3 dengan Transfer Learning,” J. Ilm. SINUS, vol. 19, no. 1, p. 75, 2021, doi: 10.30646/sinus.v19i1.526.

Ulfah Nur Oktaviana, Ricky Hendrawan, Alfian Dwi Khoirul Annas, and Galih Wasis Wicaksono, “Klasifikasi Penyakit Padi berdasarkan Citra Daun Menggunakan Model Terlatih Resnet101,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 5, no. 6, pp. 1216–1222, 2021, doi: 10.29207/resti.v5i6.3607.

N. Y. Arso, P. Studi, T. Informatika, and U. T. Mulya, “Jembrana Menggunakan Metode Naive Bayes,” pp. 260–265.

C. R. Gunawan, N. Nurdin, and F. Fajriana, “Deteksi Ikan Segar Secara Realtime dengan YOLOv4 menggunakan Metode Convolutional Neural Network,” J. Komtika (Komputasi dan Inform., vol. 7, no. 1, pp. 1–11, 2023, doi: 10.31603/komtika.v7i1.8986.

K. Azman, M. Arhami, and A. Azhar, “Metode You Only Look Once (YOLO) dalam Deteksi Physical Distancing dan Wajah Bermasker,” Pros. Semin. Nas. Politek. Negeri Lhokseumawe, vol. 6, no. 1, pp. 107–113, 2022.

R. Kurniawan, A. T. Martadinata, and S. D. Cahyo, “Klasifikasi Tingkat Kematangan Buah Sawit Berbasis Deep Learning dengan Menggunakan Arsitektur Yolov5,” J. Inf. Syst. Res., vol. 5, no. 1, pp. 302–309, 2023, doi: 10.47065/josh.v5i1.4408.

A. Ardiansyah and N. F. Hasan, “Deteksi dan Klasifikasi Penyakit Pada Daun Kopi Menggunakan Yolov7,” J. Sisfokom (Sistem Inf. dan Komputer), vol. 12, no. 1, pp. 30–35, 2023, doi: 10.32736/sisfokom.v12i1.1545.

P. A. Widjaja and J. R. Leonesta, “Differentiate a Health and Sick of Mango Leaves Using YOLOv4,” Formosa J. Sci. Technol., vol. 2, no. 7, pp. 1749–1758, 2023, doi: 10.55927/fjst.v2i7.4792.

F. H. Hawari, F. Fadillah, M. R. Alviandi, and T. Arifin, “Klasifikasi Penyakit Tanaman Padi Menggunakan Algoritma Cnn (Convolutional Neural Network),” J. Responsif Ris. Sains dan Inform., vol. 4, no. 2, pp. 184–189, 2022, doi: 10.51977/jti.v4i2.856.

M. Haakman, L. Cruz, H. Huijgens, and A. van Deursen, “AI lifecycle models need to be revised,” Empir. Softw. Eng., vol. 26, no. 5, pp. 1–29, 2021, doi: 10.1007/s10664-021-09993-1.

C. A. Aurelia and D. A. Prasetya, “Implementasi Pembelajaran AI Mastery Program dalam Mengembangkan Aplikasi Berbasis Web di PT. Orbit Ventura Indonesia,” Soc. J. Pengabdi. dan Pemberdaya. Masy., vol. 4, no. 1, pp. 1–10, 2023, doi: 10.37802/society.v4i1.299.

S. Solihat, S. Widodo, D. P. Sari, P. Sistem, and U. P. Indonesia, “Analisis Perbandingan Optimizer pada Pelatihan Model Convolutional Neural Network untuk Kasus Klasifikasi Hewan Primata,” vol. 8, pp. 459–467, 2024, doi: 10.30865/mib.v8i1.7274.

K. E. Sakti, R. A. Pradipta, T. Informatika, and U. Lampung, “RANCANG BANGUN APLIKASI WEB PENDETEKSI WARNA PADA PIXEL GAMBAR DENGAN KNN,” vol. 11, no. 2, 2023.

T. Anggardini, “APLIKASI SEGMENTASI JANTUNG MENGGUNAKAN KECERDASAN BUATAN DENGAN VISUALISASI BERBASIS WEB,” AME (Aplikasi Mek. dan Energi) J. Ilm. Tek. Mesin, no. Mi, pp. 5–24, 2023.

S. Widodo, D. Setiawan, T. Ridwan, and R. Ambari, “Perancangan Deteksi Emosi Manusia berdasarkan Ekspresi Wajah Menggunakan Algoritma VGG16,” Syntax J. Inform., vol. 11, no. 01, pp. 01–12, 2022, doi: 10.35706/syji.v11i01.6594.

F. Azimah and K. Rizky Nova Wardani, “Sistem Pendeteksi Gejala Awal Covid-19 dengan Penggunaan Metode Al Project Cycle,” J. Locus Penelit. dan Pengabdi., vol. 1, no. 6, pp. 405–418, 2022, doi: 10.36418/locus.v1i6.135.

M. Ismoyo, “IMPLEMENTASI ALGORITMA RNN PADA PENGEMBANGAN APLIKASI WEB-BASED MENTAL ILLNESS CHATBOT DI ORBIT FUTURE ACADEMY,” J. Tek. Inform. Kaputama, 2023.

K. Ahmad Baihaqi and C. Zonyfar, “Deteksi Lahan Pertanian Yang Terdampak Hama Tikus Menggunakan Yolo v5,” Syntax J. Inform., vol. 11, no. 02, pp. 01–11, 2022, doi: 10.35706/syji.v11i02.7226.

M. S. Nuha and R. Alexandro H., “Pemanfaatan Yolo untuk Pengenalan Kesegaran Buah Mangga,” Joutica, vol. 7, no. 1, p. 513, 2022, doi: 10.30736/jti.v7i1.747.

P. A. H. Pratama, R. Teguh, A. S. Sahay, and V. Wilentine, “Deteksi COVID-19 Berdasarkan Hasil Rontgen Dada (Chest Xray) Menggunakan Python,” J. Inf. Technol. Comput. Sci., vol. 1, no. 1, pp. 58–67, 2021, doi: 10.47111/jointecoms.v1i1.2956.

M. K. Suryadewiansyah and T. E. E. Tju, “Naïve Bayes dan Confusion Matrix untuk Efisiensi Analisa Intrusion Detection System Alert,” J. Nas. Teknol. dan Sist. Inf., vol. 8, no. 2, pp. 81–88, 2022, doi: 10.25077/teknosi.v8i2.2022.81-88.

W. Hidayat, M. Ardiansyah, and A. Setyanto, “Pengaruh Algoritma ADASYN dan SMOTE terhadap Performa Support Vector Machine pada Ketidakseimbangan Dataset Airbnb,” Edumatic J. Pendidik. Inform., vol. 5, no. 1, pp. 11–20, 2021, doi: 10.29408/edumatic.v5i1.3125.

M. Azhari, Z. Situmorang, and R. Rosnelly, “Perbandingan Akurasi, Recall, dan Presisi Klasifikasi pada Algoritma C4.5, Random Forest, SVM dan Naive Bayes,” J. Media Inform. Budidarma, vol. 5, no. 2, p. 640, 2021, doi: 10.30865/mib.v5i2.2937.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Klasifikasi Penyakit Pada Daun Tanaman Padi Berbasis YoloV5 (You Only Look Once)

Dimensions Badge

ARTICLE HISTORY


Published: 2024-06-30
Abstract View: 145 times
PDF Download: 113 times

Issue

Section

Articles

Most read articles by the same author(s)