Machine Learning Klasifikasi Status Gizi Balita Menggunakan Algoritma Random Forest


Authors

  • Putri Handayani Universitas Nahdlatul Ulama Blitar, Blitar, Indonesia
  • Abd. Charis Fauzan Universitas Nahdlatul Ulama Blitar, Blitar, Indonesia
  • Harliana Harliana Universitas Nahdlatul Ulama Blitar, Blitar, Indonesia

DOI:

https://doi.org/10.30865/klik.v4i6.1909

Keywords:

Nutritional Status; Random Forest; Classification; Confusion Matrix; Anthropometry

Abstract

The future growth and development of toddlers is greatly influenced by nutritional problems at the age of 0-59 months. To achieve optimal health, high nutritional status is required. Improper development, insufficient energy for exercise, decreased immunity, and long-term impaired brain function can all be caused by malnutrition. In this case, the Integrated Service Center Post(Posyandu) is tasked with monitoring children's nutritional health. Anthropometric data, or human body measurements, such as height and weight, are part of this monitoring procedure. Other variables include position measurements and complaints that havebeen submitted. The aim of this research is to use the Random Forest algorithm to classify the nutritional status of children in Nglegok District. This study uses a confusion matrix to evaluate random forest yields. Four scenarios, each with training and test data, are created from the data to perform testing. The test results show that dividing 90% training data and 10% testing is the optimal scenario, with accuracy of 88.6%, precision of 88.1%, recall of 88.6%, and F1-Score of 88.2%.

Downloads

Download data is not yet available.

References

M. K-means, O. Purwaningrum, Y. Y. Putra, and A. A. Arifiyanti, “Penentuan Kelompok Status Gizi Balita dengan Menggunakan,” vol. 15, no. 2, pp. 129–136, 2021.

E. N. Candra, I. Cholissodin, and R. C. Wihandika, “Klasifikasi Status Gizi Balita menggunakan Metode Optimasi Random Forest dengan Algoritme Genetika (Studi Kasus: Puskesmas Cakru),” vol. 6, no. 5, pp. 2188–2197, 2022.

H. Saleh, M. Faisal, and R. I. Musa, “Klasifikasi Status Gizi Balita Menggunakan Metode K-Nearest Neighbor,” Simtek J. Sist. Inf. dan Tek. Komput., vol. 4, no. 2, pp. 120–126, 2019, doi: 10.51876/simtek.v4i2.60.

H. S. T. B. Hafizan and A. N. S. T. B. Putri, “Penerapan Metode Klasifikasi Decision Tree Pada Status Gizi,” J. Penerapan Sist. Inf. (Komputer Manajemen), vol. 1, no. 2, pp. 68–72, 2020.

A. Y. Atmanegara, I. A. E. Zaeni, D. Lestari, and Y. S. A. Gumilang, “Alat Pengukur Status Gizi Balita Berdasarkan Berat dan Panjang Badan Menggunakan Indeks Antropometri Dengan Metode Logika Fuzzy,” JASIEK (Jurnal Apl. Sains, Informasi, Elektron. dan Komputer), vol. 4, no. 1, pp. 9–22, 2022, doi: 10.26905/jasiek.v4i1.8352.

Kemenkes RI, Injeksi 2018. 2020.

M. R. Akbar Ariyadi, S. Lestanti, and S. Kirom, “Klasifikasi Balita Stunting Menggunakan Random Forest Classifier Di Kabupaten Blitar,” JATI (Jurnal Mhs. Tek. Inform., vol. 7, no. 6, pp. 3846–3851, 2024, doi: 10.36040/jati.v7i6.7822.

T. Sathiya, R. Reenadevi, and B. Sathiyabhama, “Random Forest Classifier based detection of Parkinson’s disease,” vol. 25, no. 5, pp. 2980–2987, 2021.

O.- Pahlevi, A.- Amrin, and Y.- Handrianto, “Implementasi Algoritma Klasifikasi Random Forest Untuk Penilaian Kelayakan Kredit,” J. Infortech, vol. 5, no. 1, pp. 71–76, 2023, doi: 10.31294/infortech.v5i1.15829.

D. Chauhan, R. Walia, C. Singh, M. Deivakani, M. Kumbhkar, and A. Professor, “Detection of Maize Disease Using Random Forest Classification Algorithm,” Turkish J. Comput. Math. Educ., vol. 12, no. 9, pp. 715–720, 2021.

E. R. Pratama and J. B. B. Darmawan, “Klasifikasi Status Gizi Balita Menggunakan Jaringan Syaraf,” Ris. dan Teknol. Terap., pp. 1–10, 2021.

P. R. Togatorop, M. Sianturi, D. Simamora, and D. Silaen, “Optimizing Random Forest using Genetic Algorithm for Heart Disease Classification,” Lontar Komput. J. Ilm. Teknol. Inf., vol. 13, no. 1, p. 60, 2022, doi: 10.24843/lkjiti.2022.v13.i01.p06.

S. K. P. Loka and A. Marsal, “Perbandingan Algoritma K-Nearest Neighbor dan Naïve Bayes Classifier untuk Klasifikasi Status Gizi Pada Balita,” MALCOM Indones. J. Mach. Learn. Comput. Sci., vol. 3, no. 1, pp. 8–14, 2023, doi: 10.57152/malcom.v3i1.474.

R. Setiawan and A. Triayudi, “Klasifikasi Status Gizi Balita Menggunakan Naïve Bayes dan K-Nearest Neighbor Berbasis Web,” J. Media Inform. Budidarma, vol. 6, no. 2, p. 777, 2022, doi: 10.30865/mib.v6i2.3566.

C. Chazar and B. Erawan, “Machine Learning Diagnosis Kanker Payudara Menggunakan Algoritma Support Vector Machine,” Inf. (Jurnal Inform. dan Sist. Informasi), vol. 12, no. 1, pp. 67–80, 2020, doi: 10.37424/informasi.v12i1.48.

S. Devella, Y. Yohannes, and F. N. Rahmawati, “Implementasi Random Forest Untuk Klasifikasi Motif Songket Palembang Berdasarkan SIFT,” JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 7, no. 2, pp. 310–320, 2020, doi: 10.35957/jatisi.v7i2.289.

T. Purwa, “Perbandingan Metode Regresi Logistik dan Random Forest untuk Klasifikasi Data Imbalanced (Studi Kasus: Klasifikasi Rumah Tangga Miskin di Kabupaten Karangasem, Bali Tahun 2017),” J. Mat. Stat. dan Komputasi, vol. 16, no. 1, p. 58, 2019, doi: 10.20956/jmsk.v16i1.6494.

E. Prasetyo and K. Nugroho, “Optimasi Klasifikasi Data Stunting Melalui Ensemble Learning pada Label Multiclass dengan Imbalance Data,” Techno.Com, vol. 23, no. 1, pp. 1–10, 2024, doi: 10.62411/tc.v23i1.9779.

N. A. Pramudhyta and M. S. Rohman, “Perbandingan Optimasi Metode Grid Search dan Random Search dalam Algoritma XGBoost untuk Klasifikasi Stunting,” J. Media Inform. Budidarma , vol. 8, no. 1, pp. 19–29, 2024, doi: 10.30865/mib.v8i1.6965.

A. N. Rachmi, “Implementasi Metode Random Forest Dan Xgboost Pada Klasifikasi Customer Churn,” pp. 1–101, 2020.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Machine Learning Klasifikasi Status Gizi Balita Menggunakan Algoritma Random Forest

Dimensions Badge

ARTICLE HISTORY


Published: 2024-06-30
Abstract View: 313 times
PDF Download: 316 times

Issue

Section

Articles