Analisis Perbandingan KNN, SVM, Decision Tree dan Regresi Logistik Untuk Klasifikasi Obesitas Multi Kelas
DOI:
https://doi.org/10.30865/klik.v4i6.1871Keywords:
Analysis; Decision Tree; KNN; Logistic Regression; Multiclass Classification; Obesity; SVMAbstract
Obesity has become a concerning global health issue, with continuously increasing prevalence. Early identification and accurate classification of obesity are crucial for implementing appropriate prevention and treatment strategies. This study aims to analyze and compare the performance of four popular classification algorithms: K-Nearest Neighbor (KNN), Support Vector Machine (SVM), Decision Tree, and Logistic Regression, in performing multi-class obesity classification based on Body Mass Index (BMI) according to World Health Organization (WHO) standards. Using a dataset reflecting population diversity, this research evaluates the ability of each algorithm to classify obesity into several categories, such as normal, overweight, obesity grade 1, obesity grade 2, and obesity grade 3. The study utilizes 2.111 records with 17 attributes. Results indicate that the Decision Tree Algorithm outperforms other algorithms, achieving an accuracy of 99.3%, precision of 0.97-1.00, recall of 0.98-1.00, and f1-score of 0.98-1.00. KNN follows with an accuracy of 99.0%, precision of 0.98-1.00, recall of 0.98-1.00 and f1-score of 0.98-1.00. meanwhile, the Logistic Regression algorithm achieves an accuracy of 98%, precision of 0.95-1.00, recall of 0.95-1.00, and f1-score of 0.95-1.00. SVM demontrates slightly lower performance, although still showing overall good results with an accuracy of 96.6%, precision of 0.90-0.99, recall of 0.94-1.00, and f1-score of 0.93-0.99..
Downloads
References
World Health Organization, “Obesity and overweight,” https://www.who.int. Accessed: May 10, 2024. [Online]. Available: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight
B. Singh and H. Tawfik, “Machine learning approach for the early prediction of the risk of overweight and obesity in young people,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Springer Science and Business Media Deutschland GmbH, 2020, pp. 523–535. doi: 10.1007/978-3-030-50423-6_39.
Direktorat Jenderal Pencegahan dan Pengendalian Penyakit (P2P) Kementerian Kesehatan RI, “Ancaman di Balik Sensasi Manis,” https://p2p.kemkes.go.id/. Accessed: May 10, 2024. [Online]. Available: https://p2p.kemkes.go.id/ancaman-di-balik-sensasi-manis/#:~:text=Menurut%20hasil%20Survei%20Kesehatan%20Indonesia,dapat%20menyebabkan%20munculnya%20resistensi%20insulin.
B. R. K. Salim, D. M. Wihandani, and N. N. A. Dewi, “Obesitas sebagai faktor risiko terjadinya peningkatan kadar trigliserida dalam darah: tinjauan pustaka,” Intisari Sains Medis, vol. 12, no. 2, pp. 519–523, Jul. 2021, doi: 10.15562/ism.v12i2.1031.
K. Jindal, N. Baliyan, and P. S. Rana, “Obesity prediction using ensemble machine learning approaches,” in Advances in Intelligent Systems and Computing, Springer Verlag, 2018, pp. 355–362. doi: 10.1007/978-981-10-8636-6_37.
A. Adimara, K. Prahasanti, and M. P. Airlangga, “Obesitas Mempengaruhi Tingkat Keparahan Pasien COVID-19,” 2021.
A. Y. Soeroto et al., “Effect of increased BMI and obesity on the outcome of COVID-19 adult patients: A systematic review and meta-analysis,” Diabetes and Metabolic Syndrome: Clinical Research and Reviews, vol. 14, no. 6. Elsevier Ltd, pp. 1897–1904, Nov. 01, 2020. doi: 10.1016/j.dsx.2020.09.029.
F. B. C. Pimenta, E. Bertrand, D. C. Mograbi, H. Shinohara, and J. Landeira-Fernandez, “The relationship between obesity and quality of life in Brazilian adults,” Front Psychol, vol. 6, Jul. 2015, doi: 10.3389/fpsyg.2015.00966.
M. J. Gerl et al., “Machine learning of human plasma lipidomes for obesity estimation in a large population cohort,” PLoS Biol, vol. 17, no. 10, 2019, doi: 10.1371/journal.pbio.3000443.
G. Alifa Annurullah et al., “Faktor Resiko Obesitas Pada Pekerja Kantoran?: A Review,” Jurnal Kesehatan Tambusai, vol. 2, no. 2, 2021.
A. Wulandari, A. Mulya, T. Dermawan, R. R. Haiban, A. Tatamara, and H. D. Khalifah, “Application of Artificial Neural Network, K-Nearest Neighbor and Naive Bayes Algorithms for Classification of Obesity Risk Cardiovascular Disease,” IJATIS: Indonesian Journal of Applied Technology and Innovation Science, vol. 1, no. 1, pp. 9–15, 2024, doi: 10.57152/IJATIS.v1i1.1095.
A. I. Putri et al., “Implementation of K-Nearest Neighbors, Naïve Bayes Classifier, Support Vector Machine and Decision Tree Algorithms for Obesity Risk Prediction,” Public Research Journal of Engineering, Data Technology and Computer Science, vol. 2, no. 1, pp. 26–33, Apr. 2024, doi: 10.57152/predatecs.v2i1.1110.
D. Nur Fitriani et al., “Prediction of Obesity Levels Using Neural Network: Binary Classification Approach,” PARAMETER Jurnal Matematika Statistika dan Terapannya, vol. 3, no. 1, pp. 85–88, 2024, [Online]. Available: https://ojs3.unpatti.ac.id/index.php/parameter
T. Hidayatulloh and L. Yusuf, “Klasifikasi Tipe Berat Tubuh Menggunakan Metode Support Vector Machine,” INTI Nusa Mandiri, vol. 18, no. 1, pp. 71–77, Aug. 2023, doi: 10.33480/inti.v18i1.4254.
S. Y. Sibi and A. R. Widiarti, “Klasifikasi Tingkat Obesitas Mempergunakan Algoritma KNN,” in SEMINAR NASIONAL CORISINDO, 2022, pp. 370–375.
J. V. Wie and M. Siddik, “Penerapan Metode Naive Bayes Dalam Mengklasifikasi Obesitas Pada Pria,” JOISIE Journal Of Information System And Informatics Engineering, vol. 6, no. Desember, pp. 69–77, 2022, [Online]. Available: https://www.kaggle.com/,
M. Safaei, E. A. Sundararajan, M. Driss, W. Boulila, and A. Shapi’i, “A systematic Literature Review on Obesity: Understanding The Causes & Consequences of Obesity and Reviewing Various Machine Learning Approaches used to Predict Obesity,” Comput Biol Med, vol. 136, Sep. 2021, doi: 10.1016/j.compbiomed.2021.104754.
K. Jindal, N. Baliyan, and P. S. Rana, “Obesity prediction using ensemble machine learning approaches,” in Advances in Intelligent Systems and Computing, Springer Verlag, 2018, pp. 355–362. doi: 10.1007/978-981-10-8636-6_37.
M. Ramadhani, D. Darlis, and H. Murti, “Klasifikasi Ikan Menggunakan Oriented Fast And Rotated Brief (ORB) dan K-Nearest Neighbor (KNN),” Jurnal Ilmiah Teknologi Informasi, vol. 16, no. 2, pp. 115–124, 2018.
I. M. K. Karo, M. F. M. Fudzee, S. Kasim, and A. A. Ramli, “Sentiment Analysis in Karonese Tweet using Machine Learning,” Indonesian Journal of Electrical Engineering and Informatics, vol. 10, no. 1, pp. 219–231, Mar. 2022, doi: 10.52549/ijeei.v10i1.3565.
R. Syahputra, G. J. Yanris, and D. Irmayani, “SVM and Naïve Bayes Algorithm Comparison for User Sentiment Analysis on Twitter,” Sinkron, vol. 7, no. 2, pp. 671–678, May 2022, doi: 10.33395/sinkron.v7i2.11430.
et al Suryani, “View of Sentiment Analysis of Towards Electric Cars using Naive Bayes Classifier and Support Vector Machine Algorithm,” Journal of Enginering, Data Technology and Computer Science, vol. 1, no. 1, pp. 1–9, Jul. 2023.
Hendriyana, “Tampilan Analisis perbandingan Algoritma Support Vector Machine, Naive Bayes dan Regresi Logistik untuk Memprediksi Donor Darah,” Jurnal Teknologi Terpadu, vol. 8, no. 2, pp. 121–126, 2022.
M. I. Dinata and S. Kom, “Interpretasi dan Persamaan Regresi Linier.” Accessed: Jun. 21, 2024. [Online]. Available: https://lmsspada.kemdikbud.go.id/pluginfile.php/718616/mod_resource/content/1/bab%2011%20Interpretasi%20dan%20Persamaan%20Regresi%20Linier%20%20.pdf
C. Z. V. Junus, T. Tarno, and P. Kartikasari, “Klasifikasi Menggunakan Metode Support Vector Machine dan Random Forest Untuk Deteksi Awal Resiko Diabetes Melitus,” Jurnal Gaussian, vol. 11, no. 3, pp. 386–396, Jan. 2023, doi: 10.14710/j.gauss.11.3.386-396.
M. Grandini, E. Bagli, and G. Visani, “Metrics for Multi-Class Classification: an Overview,” ArXiv, Aug. 2020, [Online]. Available: http://arxiv.org/abs/2008.05756
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Analisis Perbandingan KNN, SVM, Decision Tree dan Regresi Logistik Untuk Klasifikasi Obesitas Multi Kelas
ARTICLE HISTORY
Issue
Section
Copyright (c) 2024 Siti Andini Utiarahman, A. Mulawati Mas Pratama
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).