Analisis Data Time Series Untuk Prediksi Harga Komoditas Pangan Menggunakan Autoregressive Integrated Moving Average


Authors

  • Ester Ivo Sihombing Universitas Papua, Manokwari, Indonesia
  • Christian Dwi Suhendra Universitas Papua, Manokwari, Indonesia
  • Lion Ferdinand Marini Universitas Papua, Manokwari, Indonesia

DOI:

https://doi.org/10.30865/klik.v4i6.1863

Keywords:

ARIMA; Forecasting; Onion; Chili; RMSE

Abstract

Onions and chilies are two of the many food commodities frequently used by Indonesian people in their daily lives. The high demand in the market leads to price instability, causing prices to fluctuate or remain unstable. This can result in farmers suffering losses when selling their agricultural products. Therefore, forecasting is conducted to predict future prices of onions and chilies. This can provide information on the estimated prices that farmers will set for sale to traders, which is expected to address market price instability. This research aims to obtain the best model from the Autoregressive Integrated Moving Average (ARIMA) for forecasting the prices of onions and chilies in Manokwari Regency in 2024. The data for this study is sourced from the SP2KP (Market and Basic Needs Monitoring System) website, consisting of price data for red onions, garlic, and bird's eye chilies from January 2016 to December 2023. The best ARIMA models based on the smallest AIC values are ARIMA (2,0,0) with an AIC of 1341.784, ARIMA (3,0,0) with an AIC of 1278.688, and ARIMA (1,0,0) with an AIC of 1466.834 for red onions, garlic, and bird's eye chilies respectively, with RMSE values of 7447.06, 3501.71, and 13787.59 respectively. From these models, the predicted prices of the three commodities in 2024 from January to December are as follows: red onions around Rp 50,000/kg, garlic around Rp 40,000/kg, and bird's eye chilies between Rp 50,000 and Rp 70,000/kg

Downloads

Download data is not yet available.

References

V. Komaria, N. El Maidah, and M. A. Furqon, “Prediksi Harga Cabai Rawit di Provinsi Jawa Timur Menggunakan Metode Fuzzy Time Series Model Lee,” Komputika?: Jurnal Sistem Komputer, vol. 12, no. 2, pp. 37–47, Sep. 2023, doi: 10.34010/komputika.v12i2.10644.

M. Aditya Pratama, M. Munawaroh, W. Joko Pranoto, P. Studi Teknik Informatika, F. Sains dan Teknologi, and U. Muhammadiyah Kalimantan Timur, “Perbandingan Performa Algoritma Linear Regresi dan Random Forest untuk Prediksi Harga Bawang Merah di Kota Samarinda,” Jurnal Ilmu Teknik, vol. 1, no. 2, pp. 172–182, 2024, doi: 10.62017/tektonik.

R. Yuliyanti, P. Matematika, F. Uny, and E. Arliani, “Peramalan jumlah penduduk menggunakan model arima Forecasting the number of population using the arima,” 2022. [Online]. Available: http://journal.student.uny.ac.id/ojs/index.php/jktm:

A. I. La Murdani and Y. W. A. Nanlohy, “IMPLEMENTASI MODEL AUTOREGRESSIVE INTEGRATED MOVING AVERAGE (ARIMA) UNTUK PERAMALAN JUMLAH PENUMPANG KAPAL LAUT DI PELABUHAN AMBON,” VARIANCE: Journal of Statistics and Its Applications, vol. 3, no. 2, pp. 81–90, May 2022, doi: 10.30598/variancevol3iss2page81-90.

S. P. Fauzani and D. Rahmi, “Penerapan Metode ARIMA Dalam Peramalan Harga Produksi Karet di Provinsi Riau,” Jurnal Teknologi dan Manajemen Industri Terapan (JTMIT), vol. 2, no. 4, pp. 269–277, 2023.

D. Ayu Rezaldi, “PRISMA, Prosiding Seminar Nasional Matematika Peramalan Metode ARIMA Data Saham PT. Telekomunikasi Indonesia,” Peramalan Metode ARIMA Data Saham PT. Telekomunikasi Indonesia. PRISMA, Prosiding Seminar Nasional Matematika, vol. 4, pp. 611–620, 2021, [Online]. Available: https://journal.unnes.ac.id/sju/index.php/prisma/

L. Ainiyah and M. Bansori, “PREDIKSI JUMLAH KASUS COVID-19 MENGGUNAKAN METODE AUTOREGRESSIVE INTEGRATED MOVING AVERAGE (ARIMA) (STUDI KASUS KABUPATEN SIDOARJO)” 2021. [Online]. Available: http://infocovid19.jatimprov.go.id/.

H. Afridar and W. Andriani, “PENERAPAN METODE ARIMA UNTUK PREDIKSI HARGA KOMODITI BAWANG MERAH DI KOTA TEGAL,” 2022. [Online]. Available: https://hargapangan.id/tabel-harga/pedagang-besar/daerahdengan

I. Izzulsyah et al., “PENDEKATAN METODE AUTOREGRESSIVE INTEGRATED MOVING AVERAGE TERHADAP PERKIRAAN HARGA BAWANG MERAH DI KOTA PANGKALPINANG,” Pangkalpinang, Dec. 2023. Accessed: May 30, 2024. [Online]. Available: https://journal.ubb.ac.id/snppm/article/view/4823

R. P. Dhenanta and I. B. Kholifah, “Prediksi Curah Hujan Bulanan Kabupaten Trenggalek Tahun 2022 dan 2023 Menggunakan Metode ARIMA,” Seminar Nasional Official Statistics, vol. 2022, no. 1, pp. 1135–1144, Nov. 2022, doi: 10.34123/semnasoffstat.v2022i1.1368.

I. Mardiyah, W. Dianita Utami, D. C. Rini Novitasari, Moh. Hafiyusholeh, and D. Sulistiyawati, “ANALISIS PREDIKSI JUMLAH PENDUDUK DI KOTA PASURUAN MENGGUNAKAN METODE ARIMA,” BAREKENG: Jurnal Ilmu Matematika dan Terapan, vol. 15, no. 3, pp. 525–534, Sep. 2021, doi: 10.30598/barekengvol15iss3pp525-534.

F. Zundina Ulya, A. Rony Wijaya, and P. Laras Puspita, “Peramalan Harga Cabai dan Bawang di Pasar Tradisional Purwokerto dengan Model Autoregressive Integrated Moving Average (ARIMA),” Purwokerto, Oct. 2023. Accessed: May 30, 2024. [Online]. Available: https://scholar.google.com/citations?view_op=view_citation&hl=id&user=0PHIkpMAAAAJ&citation_for_view=0PHIkpMAAAAJ:u5HHmVD_uO8C

S. R. Catur Putri and L. Junaedi, “Penerapan Metode Peramalan Autoregressive Integrated Moving Average Pada Sistem Informasi Pengendalian Persedian Bahan Baku,” Jurnal Ilmu Komputer dan Bisnis, vol. 13, no. 1, pp. 164–173, May 2022, doi: 10.47927/jikb.v13i1.293.

R. Hardianto, “PERAMALAN PENJUALAN TEH HIJAU DENGAN METODE ARIMA (STUDI KASUS PADA PT. MK),” Padang. Accessed: May 30, 2024. [Online]. Available: https://publikasi.mercubuana.ac.id/index.php/pasti/article/view/2752/1611

A. Cherrly and R. Somya, “Prediksi Penjualan Tiket Wisata Taman Bermain Menggunakan Metode ARIMA,” Techno.Com, vol. 22, no. 2, pp. 312–322, May 2023, doi: 10.33633/tc.v22i2.7950.

Y. D. Cahyani, “PENERAPAN METODE ARIMA (AUTOREGRESSIVE INTEGRATED MOVING AVERAGE) BERBASIS MINITAB UNTUK MEMPREDIKSI TINGKAT PENGAJUAN KLAIM ASURANSI KECELAKAAN DI PT JASA RAHARJA PERWAKILAN MALANG,” Malang, Jul. 2023. Accessed: May 30, 2024. [Online]. Available: http://conference.um.ac.id/index.php/LAS/article/view/8252/2556

R. R. Elhakim, “PREDIKSI NILAI TUKAR RUPIAH KE DOLLAR AS MENGGUNAKAN METODE ARIMA,” MATHunesa: Jurnal Ilmiah Matematika, vol. 8, no. 2, pp. 145–150, Jun. 2020, doi: 10.26740/mathunesa.v8n2.p145-150.

A. H. Al Rosyid, C. D. N. Viana, and W. A. Saputro, “PENERAPAN MODEL BOX JENKINS (ARIMA) DALAM PERAMALAN HARGA KONSUMEN BAWANG MERAH DI PROVINSI JAWA TENGAH,” Agri Wiralodra, vol. 13, no. 1, pp. 29–37, Apr. 2021, doi: 10.31943/agriwiralodra.v13i1.19.

J. J. Pangaribuan, F. Fanny, O. P. Barus, and R. Romindo, “Prediksi Penjualan Bisnis Rumah Properti Dengan Menggunakan Metode Autoregressive Integrated Moving Average (ARIMA),” Jurnal Sistem Informasi Bisnis, vol. 13, no. 2, pp. 154–161, Oct. 2023, doi: 10.21456/vol13iss2pp154-161.

S. W. Suseno, “PENERAPAN METODE ARIMA BOX-JENKINS UNTUK Pasien Rawat Jalan Rsud Kartini, Peramalan DI,” Semarang, Feb. 2017. Accessed: May 30, 2024. [Online]. Available: http://lib.unnes.ac.id/id/eprint/32221


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Analisis Data Time Series Untuk Prediksi Harga Komoditas Pangan Menggunakan Autoregressive Integrated Moving Average

Dimensions Badge

ARTICLE HISTORY


Published: 2024-06-06
Abstract View: 200 times
PDF Download: 231 times

Issue

Section

Articles